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AN INVESTIGATION OF ATMOSPHERIC  TURBULENCE 
BY  STELLAR  OBSERVATIONS* 

by 

Jack  Lytle Bufton 
Goddard  Space  Flight  Center 

CHAPTER I 

INTRODUCTION 

Light  propagation  through  the  atmosphere is a subject  that  until  recently 

has  received  neither  experimental  nor  theoretical  treatment.  Traditionally,  the 

study of this phenomenon has  been  concentrated  in  astronomy  where  the  collection 

of visible  radiation  from  stellar  sources is of utmost  importance.  Recently,  the 

study of propagation  has  attracted  the  scientist  interested  in  relating  the  physics 

of the  atmosphere  to  observed  effects, as well as the  engineer  interested in 

defining  atmospheric  limits  for  various  optical  systems.  The advent of the laser 

and  its  implications  for  optical  communication  and  ranging  has  spurred interest 

in  the  whole  field of atmospherics. 

Although to  date  there is no  unified  treatment of atmospheric effects a t  

optical  frequencies,  several  investigations  have  been  partially  successful  in  pre- 

dicting  experimental  results.  There  exists a body of journal articles and  research 

reports  treating  various  propagation  problems  and  estimating  limits  imposed by 

*The  information  presented  herein  was  submitted a s  a  thesis in  partial  fulfillment of the  requirements for the 
degree of Master of Science  in  Physics,  University of Maryland, College  Park, Maryland, 1970. 
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the  atmosphere.  The  most  important areas for future  investigation lie in  the rela- 

tion of physical  properties of the  atmosphere  to  optical  data  and  the  determination 

of applicability  and range of validity of the  present  theories.  The  purpose of this 

thesis  research is to  provide  more  information  in  the first area in order to shed 

some  light on the  second area. The  approach is a study of a particular  problem, 

the  propagation of light  from a star to  an  earth-based  telescope  receiver.  Theoret- 

ical  analysis  is  used  to  predict  effects on starlight  and  experimental  data  is  then 

used  to  evaluate  the  models  and  relationships  behind  this  analysis. 

At  the  outset  an  introduction  to  the  physics of the problem is presented.  This 

is followed by sample  diffraction  calculations  for a thin  layer of atmosphere  and a 

more  detailed  introduction  into  the  atmospheric  physics.  Statistical  theories of 

recent  years are then  reviewed  and  the  pertinent  results for starlight  propagation 

assembled.  Where  possible,  formulae of other  researchers are used  intact.  In 

several  situations  the  theory  must be  extended o r  modified  to  more  closely  corre- 

spond  to  the  experimental  part of the  thesis.  In  particular  an  analysis of stellar 

image  intensity  and  motion-time  behavior is presented  here  in a new form.  A  de- 

vice  developed at Goddard  Space  Flight  Center  to  study  stellar  image  quality  in a 

telescope is used  to  provide  quantitative  data.  Data is collected on stellar image 

intensity,  motion,  and  size as observed  in a 0.152-meter  diameter  refracting 

telescope. 

The  central  contribution of the  thesis  research is the  use  of  data  to  evaluate 

parameters of a model  turbulence  profile. Such a profile is of general  interest  to 

all researchers  in  the  vertical  propagation  problem  regardless of their  specific 

optical  systems.  Data on stellar  image  intensity  and  image  motion-time  behavior 

is combined  with  upper  altitude wind velocity  and  the  theoretical  analysis  developed 

earlier to  arrive at the  model  parameters. A concluding  section  discusses  applica- 

tion of the  model  and  directions  for  future  research. 

2 



CHAPTER II 

THEORETICAL BACKGROUND 

Physics of the  Problem, Part I 

Optical  propagation  in  the  earth's  atmosphere is influenced  by  absorbtion, 

molecular  and  aerosol  scattering,  and  turbulence-induced  scattering.  The first 

two mechanisms  result  in effects that  can  be  minimized by proper  choice of local- 

ity  and  weather  conditions  for  observations.  In  addition  they are relatively sta- 

tionary effects within a particular  locality or  in a period of several  hours.  The 

third  mechanism,  turbulence-induced  scattering,  results  in  the  most  serious 

optical  problems  from  the  viewpoint of this  thesis.  The  turbulence  process  pro- 

duces  random  fluctuations  in  refractive  index  along the  optical  path.  This  in  turn 

distorts  the  phase o r  shape of the  optical  wavefront.  After  propagating a distance 

through  the  turbulent  atmosphere  an  optical  wavefront  will  exhibit  phase  and 

irradiance  distortions.  These  distortions  can  change  rapidly in  magnitude  over 

short  periods of time  and  among  different  localities. 

First attempts at solution of optical  propagation  problems,  ranging  from 

the  work of Lord Rayleigh'  to  more  recent  investigators ,2 ' 3  suggested  that  the 

observed  optical  effects  may  be  explained by thin  layers of turbulence  in  the 

atmosphere.  Diffraction  calculations relate optical effects to  the  statistics of the 

layers.  In  reality effects from  many  levels  in  the  atmosphere are important  in 

producing  the  observed  results. Without considering,  for  the  moment,  the 

turbulence  process in more  detail, it is instructive  to  examine a highly  simplified 

one-layer  atmospheric  model. Although far from  rigorously  correct,  the  single- 

layer  model  does  develop  the  trends  and  reveal  the  optical  physics  involved. 
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Single-Layer Model 

Consider  the  two-dimensional  optical  propagation  problem,  Figure 1, de- 

fined  in the following  manner. A unit  amplitude  plane  wave  (starlight) is incident 

upon  a  thin  atmospheric  layer  that  imparts  a  sinusoidal  modulation  to  optical 

phase.  The  disturbed  wave  propagates  to a ground-based  telescope  where  an 

image is formed.  The  telescope is modeled by a one-dimensional  aperture  and 

thin  diffraction  limited  lens.  The  quantities of interest   are  expressions  for  ir-  

radiance  and  phase of the wave  in  the  aperture  and  image  planes  in  terms of the 

various  propagation  parameters. 

INCIDENT  UNIT 
AMPLITUDE  PLANE VN 1 I I WAVE WIND 

VELOCITY - 
z.0 4 COS" 

PHASE  DISTURBANCE 

LENGTH 

IMAGE l i i  
PLANE 
Figure 1. Thin layer  propagation  problem 

The  propagation  parameters  are as follows: 

+(x) = optical  phase  modulation  imposed by thin layer 

4 (x)= B C O S  [ 2 x ( x / d  + A ) ]  

d = spatial  wavelength of the  phase  pattern 
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A = A (t) = relative phase 

A =  V N t  

"N 
= velocity of pattern (wind velocity) 

B = depth of phase  modulation 

z = propagation  distance  from  layer  to  aperture  plane 

2 L =  aperture width 

A = optical  wavelength 

k =  27~/h .  

Afte r  passing  through  the  phase  modulation  the  plane  wave  disturbance is repre- 

sented as follows: 

This  can be written in terms of an  infinite series using  the  Jacobi-Anger  expan- 

sion, 

W 

U ( x ; O ) = E  J, (kB)exp [ 27rirn (x /d+A t 1'4)I. 
m = - m  

The  angular  spectrum of U (  x; 0) in   terms of spatial  frequency, f x ,  is the  Fourier 

transform of U(x; 0) as given by the  expression 

*, (fx)= j" u (x; 0) exp ( -  77 f x  x) dx 
W 
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The  angular  spectrum, A Z  (f,), after  propagation  the  distance, Z, is just A, (f,) 

with  phase  delayed by the  factor, k z k - ( A f,)2 , 

Az ( f , )  = ( f , )  exp [ i  k z v’l - (A fx)21. 

The  desired  quantity is U(x; z), the  complex  disturbance in the  aperture plane. 

This is the  inverse  Fourier  transform of Az (fx). 

m 

U(x; z) = lm A,, ( f , )  exp [ik z ~‘1 - (X f x ) 2 1 ~  

exp ( 2  rr i f,  x) d f ,  

= 2 J, (k E) exp  [ 2  7~ i m  (A + 1 / 4 ) ] .  
rn= -03 

J -m 

6 ( f ,  - m ’d) exp  [i k z fl - (A f,)2]X 

exp  ( 2  rr i f ,  x) d f ,  

= 2 J, (k B) exp [ 2 7 ~  i m (A t 1./4)1x 
,,,=-rn 

The  last  result is obtained by substitution of equation (2) in  equation (4) and per- 

formance of delta function integral. With the  relations 
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s i n  x = e x p   ( i x )  - e x p  (- i x )  
2 i  

a 

and 

c o s  x = e x p  ( i x )  + exp  (- i x )  , 
2 

U(x; z) can be rewritten 

U ( x ;  z )  = J, (k €3) exp ( i  k z )  

+ J, (k B) exp [ i k z  1 - (h /d ) , I .x  

2 i s i n  [27r  ( A  + 1’4 + x / d ) ]  

+ J, (k ’3) exp [i k z 1 - 4 ( h / d ) 2 ] ~  

+ . .  . .  

Under the  assumption  that  the  depth of phase  modulation is much less  than  a 

wavelength,  the  argument of the  Bessel  functions  is  much  less  than  one,  that  is, 

k B = -  < < 1 .  27Ts 
x 

Thus in the  series  expansion of U(x; z) only terms of order (k  B)2 or less  should 

be  retained.  From  the  series  expansions of the  Bessel  functions  themselves, it is 

found that 
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where 

and 

to  order (k B ) 2 .  An additional  necessary  assumption  is  that A /d < < 1, i. e. , the 

wavelength of light is much,  much  smaller than  the  spatial  wavelength of phase 

modulation.  This is quite  reasonable  since  the  smallest  dimensions of turbulent 

eddies are on the  order of millimeters.  Thus, 

and 

f1 - 4 (A’d)22 1 - 2 (Xld), .  

Employing  the  above  approximations,  equation (5) results in 
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Irradiance in the  aperture  plane is now formed, as follows: 

I (x; z )  = u* (x; 2) u (x; 2) 

kZ BZ 
2 

I (x; 2) = 1 - - t 2 k  B C O S  [27r (A t x/d) ]  (7) 

+-t- k 2 B 2  k Z B Z c o s  [ 4 7 r ( A + x / d ) ] .  
2 2 

To proceed  further  a  small-angle  requirement is imposed.  Thus, 

sin [k z ( h ’ d ) 2 ]  2 k z (A/d)2 ,  

and 

c o s  [k z (h’d)’] 2 1. 

For z = 10 meters  and h = 0 .5  micron  this  forces  d  to be greater than one milli- 

meter.  For z = 10 kilometers and A = 0.5 micron  d  must  be  greater  than 10 centi- 

meters.  Thus  the  spatial wavelength,  d,  which corresponds  to  turbulence  dimen- 

sions,  must be larger  than a certain  minimum  size which is near a  millimeter  at 

the  earth’s  surface and rises to  approximately a meter at the  edge of the  atmos- 

phere.  The  data or  estimates  available on minimum  turbulence  sizes as a 

function of altitude  suggest  that  these  requirements are reasonable.  Thus I (x; z )  

reduces  to 
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dL 

The  original  sinusoidal  modulation of phase  has  resulted  in a sinusoidal  irradi- 

ance  modulation  in  the  aperture.  The  depth of this  modulation is 

4 n 2 B z  

d 2  

and  thus  increases  with  growth of z and B and decreases  for  larger  pattern  sizes 

at  a given z. 

Total  intensity  in  the  image  is found by integration  over  the  aperture as 

follows: 
t L  

ITOT = 1, I (x;  z) d x  

Restriction  to  the  dimens ,ions of the  aperture  introduces  the  additional  term 

. 2 n L  s ln -  
d 

that  acts as an  aperture-averaging  term. Changes in 2L,  the  aperture size, 

a r e  not as  important  in  effecting I,, where 2/d >> 1 as when L/d 2 1. IToT,  

like I(x; z ) ,  is  actually a function of time  through  the  dependence of A on time, 

A =  VN t = A ( t , .  
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Thus,  the  frequency of image  intensity  variations  (scintillation) is directly  pro- 

portional  to wind velocity at the  particular  altitude, z, of the  phase  modulation 

layer . 

This  same  type of analysis  can be applied  to arr ive at an  expression  for  opti- 

cal  phase in the  aperture plane.  Together with irradiance  information, a trans- 

formation  to  the  image  plane  can  then  be  made  with  the  Fraunhofer  dif- 

fraction  approximation.  The  interesting  quantities of image  size,  image motion, 

and their  respective  time  dependences  can  be  computed in terms of the  initial 

propagation  parameters.  The  interested  reader is referred  to  the work of 

Ratcliffe2 and Ramsay4  for  detailed  treatments  in  this  area.  This  analysis will 

not  be  presented  here.  Instead a presumably  more  accurate  analysis  based 

on current  theories of propagation  and  the  actual  structure of turbulence 

is  presented in Chapter III. Although inaccurate  for  specific  results, 

the  foregoing  analysis is not  without merit. A s  irradiance  behavior  in  the 

aperture  plane is again  discussed in Chapter 111 in  light of current  theories, 

many of the  concepts  developed  from  the  simple  one-layer  model  will be 

recognized. 

P h y s i c s  of the Prob lem,   Par t  11 

Atmospheric  optical  index of refraction, N, is not sensibly  affected by 

pressure independent of its change  in  density.  In  the  visible  region  there is a weak 

dependence  on  wavelength.  The  following  equation  expresses  these  dependencies 

and includes  empirical  constants  established5  for  the  visible  range of the 

spectrum : 

N ( p ;  X) = 1 . 0  



where 
p = atmospheric  density, 

PO 
= (standard  temperature  and  pressure)  density of dry air, 

and 
X = optical  wavelength in microns. 

Atmospheric  density at a given  point  undergoes  rapid, small  fluctuations  around 

a relatively  steady  mean  value.  This is a result of turbulence  mixing  the air. The 

causal phenomenon for  turbulence  may  be  thermal o r  mechanical.  Detailed  analy- 

sis of these  mechanisms is left to  the  meteorologist  or  atmospheric  physicist. 

From  the  optical  standpoint  the  important  points  are  that  turbulence  results in 

quite  serious  optical  problems and  that its structure  can  be  described with some 

success. 

In typical  turbulence,  generation  energy  is  input  to  the  atmosphere in large- 

scale  structures,  with  dimensions of meters  or  larger.  Energy is then  trans- 

ferred  to   smaller  and smaller  turbulent  eddies  with little energy  loss  until  finally 

it is dissipated  into  heat  in  the  smallest  eddies  (dimensions  near  one  millimeter 

at  the  earth's  surface).  Turbulence  characteristics  between  these  ill-defined 

outer, Lo , and inner, X0, scales which make  up  the  "inertial  subrange"  can  be 

treated  in a reasonable  fashion. 

It is evident  from  the  random  nature of turbulence-induced  fluctuations  that a 

statistical  approach is called  for.  The  primary  statistic of the  random  field is 

the  structure  function,  defined as the  mean  square  difference of a quality of the 

field  for  two  points  separated  a  distance ? . If the  field  can  be  considered  homo- 

geneous and isotropic  the  structure  function  depends  only on the  magnitude, ! ? j , 

of ? . This  will be denoted  simply by r. 

Analysis  due to Obukhov and  Kolmogorov  concludes,  primarily on the  basis 

of dimensionality  arguments,  that  the  structure  function  for  velocity  fluctuations 

in  the  inertial  subrange  can be written 
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where 

DY ( r )  = velocity  structure function , 

r = separation of measurement points 1 and 2 ,  

E = energy dissipation rate per unit  volume. 
and 

Associated  with D (r) is its Fourier  transform, Fv ( K ) ,  the  velocity  spectrum. 

In three  dimensions Fv ( K )  is proportional  to K - ~ '  ' 3 ,  where is a spatial  frequency 

vector.  This  formulation  has  been  verified  experimentallyso 9 by measurements 

V 

of small-scale  velocity and temperature  fluctuations  in  atmospheric  surface  layers 

and  shown to  be  generally  independent of the  mechanism  used  to  generate  the 

turbulence.  However,  density, not velocity, is  the  important  parameter  from  the 

optical  viewpoint. One step away from  density  fluctuations  and,  thus,  refractive 

is  the  temperature  structure function, D T ( r ) .  Obukhov concluded  that DT (r) can 

be  written  in a form  similar  to Dv (r). Thus, 

where 

= temperature  structure  constant. 

Temperature and density  statistics are directly  related  since  the  atmosphere  will 

not  support  local  pressure  gradients.  Warm  segments of air are less dense  than 

similar  segments of cold air at the  same  altitude.  Typical  temperature  fluctua- 

tions a re  less than a few tenths of a degree  centigrade.  The  resulting  density 

changes a r e  of the  order of hundreds of a mg/cm3 and refractive index fluctuates 

by one part  in l o m 6 .  The  additive  effect of many small  changes of N ( p ;  A) along 

the  optical  path  can  result in serious  wavefront  distortion at the  receiver. 
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Mathematically  the  connection is as follows.  The  variation, Ap, in 

density (at constant  pressure)  resulting  from a small  variation  in  temperature, 

A T ,  is 

A p = -  P 
R A T  

from  the  ideal  gas law. Further,  since 

then, 

From equation (10) the  effect on refractive index of a small  change in density, 

A p,  can be observed.  Thus, 

Statistics of A N and AT are thus  connected by the  equation 

Structure  functions  relating N and T go as the  square of A N and AT. Thus the 

two structure  constants are related in the following manner: 
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where 

These  equations are the  important  results  from  turbulence  theory.  They relate 

the  statistics of refractive  index  to a strength of turbulence  factor, C: , and in turn 

to  the  strength of temperature  fluctuations, C; . 

In the  foregoing  analysis  isotropy  has  been  assumed.  For  separations, r, 

well  within  the  inertial  subrange and at  the  same  altitude  this is not a bad as- 

sumption.  Strength of turbulence, C: , takes on  different  values as a function of alti- 

tude  due to changes in absolute  density,  absolute  temperature,  and  the  strength of 

temperature  fluctuations. For vertical  propagation  problems,  altitude  dependence 

must be taken  into  account.  This  is  accomplished by assuming  local  isotropy at a 

given  altitude,  retaining  the ' t 2 / 3 1 t  law  for DN (r), and considering CE to  be C i  (h), 

a smoothly  varying  function of altitude,  h, as follows: 

Similarly  sizes of inner and outer  scales  vary with  altitude.  The  inner  scale is 

thought to attain  its  smallest  value  near  the  ground and increase  approximately 

as h+' ' 3  . The  outer  scale is less well  understood but may  be  approximated by 

where 
h = height  in  meters . 

These  rough  values  for X 0  and L o  were  obtained  from  Hufnagel" and Fried ll. 

Various  estimates and data  are  also  available on the C i  (h)  profile.  These are 

presented as an  introduction to Chapter V.  
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Finally, it myst  be  noted  that  there  exist  turbulence regimes (particularly at 

night near  the  earth's  surface  under  conditions of low wind) where  the  existence 

of an inertial  subrange and the  applicability of the ??2/3" law are questionable. In 

these  regimes  there is insufficient  energy  input  to  have  well-developed  turbulence. 

F o r  altitudes  above  the  surface  layer  the  existence of high  Reynolds  number flow 

and the  associated  well-developed  turbulence  argue for the  existence of inertial 

subrange. 

Introduction to Current Theories 

Expression of optical  effects  in t e rms  of the  statistics of refractive  index 

has  been  the  subject of many  current  theoretical  treatments. Since  the earlier 

work  in  diffraction  from  single  layers,  researchers  have  employed  geometrical 

optics and approximate  solutions  to  the  wave  equation. In geometrical  optics 

the  usual  starting point is integration of the  "ray  equation" as in  Chernov12, 

Beckmann13 , and  Hodara14.  Along  the way, assumptions of no diffraction  and 

small-angle  scattering are made.  Range of validity of this  approach is restricted 

to  the  turbulence  pattern  near  field.  Since 4 o, inner  scale of turbulence, is the 

smallest  dimension of the  pattern,  the  range  constraint  can  be  expressed 

where 
z = r a n g e  o f  v a l i d i t y .  

This is quite a severe  constraint, of the  order of a few meters   near   the ground. 

Recently a few authors,  notably  Taylor15,  have  indicated  that  geometrical  optics 

may  apply  for  longer  ranges, at least for  predicting  optical  phase  statistics. If 

a Gaussian  form  for  refractive  index  structure  function is assumed,  the  theory 

lends itself to   use of geometrical  optics.  This is where  considerable  effort  has 

been  placed  in  the  past. Here the  important  parameter  becomes a correlation 

length, L , intermediate  in  length  between 4 and L o. Much evidence  cited 
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previously  suggests  that  the Obukhov-Kolmogorov (OK) theory is more applicable 

especially  near  the  earth's  surface. In addition,  geometric  optics  results  for  the 

Gaussian case have  been  shown  to  be  somewhat  in e r r o r  by Kerr '6. Application 

of geometrical  optics and the OK turbulence  spectrum  to stellar observations is 

presented by  Rieger l 7  and discussed  further by Young 18. 

The  most  successful  treatments of optical  propagation  through  turbulence  have 

been  achieved by approximate  solutions of the  scalar wave  equation 

o2 u (;) + k2 N 2  (F) u (;) = 0.  (16) 

For  a plane  wave  incident on the  turbulence, as in  the  case of starlight at the  top 

of the  earth's  atmosphere,  the  complex  field  distribution is written 

u (F) = A (F) e x p  [ i  k q5 (;)I 
o r  

u (;) = exp[ lnA (;) t i k 4 (;)I. (17) 

A s  this  disturbance  propagates  through  the  atmosphere it is randomly  perturbed 

in a multiplicative  manner.  The end result is a product, not a sum, of the  many 

intermediate  actions of randomly  fluctuating  refractive  index.  Terms  in  the 

exponent of equation (17) are effected  in an additive  manner. As a consequence 

of the  central  limit  theorem  these  terms  should  have a Gaussian  distribution. 

Thus  the  conclusion  follows  that  log-amplitude  and  phase obey Gaussian statistics 

Of the  wave  equation  treatments  use of the  so-called "Rytov approximation" 

has  achieved  preeminence.  The  basis of this  approximation is the  neglect 

of a small   term  in  the wave  equation  after  the  expression (17)  is substituted  in. 

This  transforms it into a linear  equation which can  be  solved  for  the  desired 

optical  statistics.  Principal  investigators of this  method are Tatarskilg and 
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I -  

Fried".  There is extensive  literature  devoted  to  these  mathematical  efforts. 

For  a full  mathematical  treatment  the  interested  reader is referred  to  Tatarski's 

"source book". While arguments are still raging  over  the  validity of this  method, 

it has  been  verified  experimentally 21, 2 2  at least for  scintillation  over  ranges be- 

yond the  geometrical  optics  limit. Both American  and  Russian  experimenters 

have,  however,  reported  saturation effects for  long  paths  and/or high turbulence 

conditions near  the ground. For  vertical  propagation no such  saturation  effects 

have  been  observed  and it is felt that  the  theory  holds  well.  As  with  other  optical 

propagation  theories  direct  confirmation  eludes  the  observer  since  the  theory is 

really a two-step  process.  First  the  optical  statistics of interest  must  be  related 

to  refractive index statistics of the  field of turbulence,  such as in  the  Rytov  ap- 

proach.  Then  the  turbulence  process  must be adequately  described. An e r r o r  

in either  or both would have  an  adverse  effect on the  prediction of  experimental 

data.  This is especially  true  for  the  vertical  case  where  the  strength of turbu- 

lence  changes  with  altitude. 

Another  school of investigators,  notably  BeranZ3 and H ~ f n a g e l ~ ~ ,  while  work- 

ing  from  the wave  equation,  have  modified  it to a differential  equation  in  statistics. 

Averages are taken  before  the  equation is solved.  The end result is a mutual 

coherence  function  for  the  atmosphere.  This  can  be  directly  expressed  in  terms 

of Tatarsksi 's wave structure function.  Thus,  at  least in the area of average  wave- 

front  degradation,  the two principal  methods  achieve  the  same  end  result. Once 

again  prediction of experimental  data  depends on the  form of the wave structure 

function.  This  in  turn  depends  on  the  representation of turbulence. 

In the  following  chapter  results of theories  applicable  to stellar observations 

will be  discussed.  In  several  cases  the  present  theory  must  be  extended  or 

modified. 
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CHAPTER 111 

ANALYSIS  OF STELLAR IMAGE EFFECTS 

Image Intensity 

Total  image  intensity  results  from  the  irradiance  pattern of starlight  sampled 

by the  telescope  aperture.  Irradiance  varies  with both position and time  in  the 

aperture  plane. A s  indicated  in  Chapter I1 the  quantity  log-amplitude  should  obey 

Gaussian or  normal  statist ics.  Thus  irradiance  should  have a log-normal  be- 

havior.  Log-amplitude is defined  in  te,ms of irradiance, by the  equation 

.e (2, t )  - log, - , 1 I(;, t )  
2 I o  

where 

8 (2, t )  = instantaneous  log-amplitude at position x' in  the  aperture plane, 

I (;, t )  = corresponding  irradiance at x', 
and 

I,, = ensemble  average of I (2, t )  

= <I (2, t)> . 

Variance of log-amplitude, c2 has  been  shown25  to  equal  the  negative of 
.e' 

average  log-amplitude 

crj, = - <.e (G, t)) 

under  the  assumptions of Gaussian statistics for log-amplitude and conservationof 

energy. A theoretical  expression  for ul has  been  proposed by Tatarskilg  on  the 

basis of the  Rytov  approximation and  Kolomogov turbulence  spectrum. Thus, 
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"4 - - .56  k716 s e c  @l1I6 I c i  (h) h516 dh ,  

where 

k = optical  wave  number = - 2.n 
A '  

B = stellar zenith  angle, 
and 

(h) = refractive  index  structure  constant as a function of altitude,  h. 

This  formulation is also conditioned on an  infinite  plane-wave  source  (starlight) 

and a point  detector. A telescope with small  aperture  such  that  instantaneous 

irradiance is constant  over  the  aperture  can  be  considered a point  detector.  The 

predicted  wavelength  dependence  contained  in k716 is such  that ~2 is reduced 

by 20 percent  in  passing  from A = 0.45 p to  A = 0 . 5 5 ~ .  While v i  is reduced  in  magnitude 

at the  higher  wavelength,  analysis26  has shown that  spectral  correlation of 52 
remains high for  this  separation of wavelengths. 

Secant of zenith  angle is simply  the air mass through which starlight  must 

pass  before  reaching  the  telescope. The  above 111'6 power  dependence  has  been 

shown to  break down for  large zenith  angles when detection is not  made  under 

monochromatic  conditions. A recent  study  has  attributed  this  to  the  increasing 

role of chromatic  dispersion  for  large B . Under  such  conditions  different  wave- 

lengths of starlight suffer varying  degrees of refraction  in  the  atmosphere so that 

they follow different  paths  through  spatially  uncorrelated  turbulence.  The end 

result   is  a saturation-like effect for  at large B .  Dependence on strength 

of turbulence, C i  (h), involves  the 5/6 moment of altitude.  Thus  altitudes  where 

[ (h) h5I6 dh 
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has its largest  values are most  important  in  determining u2  The  significance 4' 
of this  important  relationship will be  discussed  in  Chapter V. 

A photomultiplier  tube or other  square-law  device is normally  used  in  field 

work to obtain  data on the stellar image.  Electric  current out of this  device is 

proportional  to  irradiance, not amplitude.  Thus it is sometimes  more  convenient 

to handle  the  data  in  terms of irradiance  statistics.  The  connection with  log- 

amplitude  statistics  is  easily  made.  Let  the  ratio of r m s  image  intensity  fluc- 

tions to their  average  value  be  the  fundamental  measure of irradiance  statistics. 

This  ratio,  here  called CIV,  is  the  coefficient of irradiance  variation.  Thus, 

uI 

I o  
C I V  = - ,  

where 
C T ~  = irradiance  variance 

I 

= <(I - I,)2> . 
Noting that 

1 I 4 = - l o g ,  - 
2 IO 

and, thus, 

w: can  be written 

I = I, exp ( 2 4 ) ,  

where 
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The last result  follows  from  the  Gaussian  behavior of 4.  Likewise, 

and 

The  ratio u:/I; is just CIV2.  Thus, 

In  actual  experimental  situations  where  equipment  dynamic  range or   smal l  de- 

partures  from  Gaussian  behavior  must  be  accounted  for,  the  use of this  equation 

is questionable 27 .  For values of D$ < 0.05 where  there is little  difference between 

the  normal and log-normal  distributions  the  equation  may  be  used  safely,  however. 

Furthermore,  for  these  smaller  values  an  approximation  to  equation (22) can  be 

employed as follows: 

C I V 2  = e x p  ( q u 2 )  - 1 .e 
C I V ~  t 1 = e x p  ( 4 2 )  4 

I n  (CIV' t 1) = 4 ~ :  

c1v4 C I V ~  . , , = C I V 2  - - 
2 3 

+ - -  

For  

Therefore, 

CIV '  2 4u$ . 
Experimental  studies of starlight  almost  invariably  employ  telescopes of 

aperture  dimension  larger  than  several  tens of centimeters.  These  optical  sys- 

tems cannot  be  considered  point  detectors.  In  the  experimental  phase of this 
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thesis  the  aperture is circular and  unobstructed with a diameter of 15.2 centi- 

meters. This is intermediate  between  the  point  detector and a typical  astronomi- 

cal  telescope of a meter  or  more in diameter. A s  diameter  increases  the 

strength of image  intensity  fluctuations,  measured  either by u i  or  CIV, decreaseb, 

slowly at first and  then  more  rapidly as the  spatial  correlation  distance of ir- 

radiance  in  the  aperture  plane is exceeded.  In  addition,  the  frequency  content 

and  zenith-angle  dependence of the  fluctuations are altered. 

The  interesting  statistic now becomes  covariance  rather  than  variance. 

Covariance of log-amplitude, u i ( p )  , and  covariance of irradiance, u ;  (p)  , are  

functions of aperture plane dimension, p , where 

and 
O l p L D  

D = ape r tu re   d i ame te r .  

Explicit  covariance  results  for  the  starlight  propagation  problem,  based on the 

Rytov  approximation and Obukhov-Kolmogorov  turbulence  spectrum,  are  limited 

to  those of Fried2*. He has  achieved  results only by assuming a specific  form for 

C i  (h) as  a function of altitude.  More  general  results  corresponding  to  equation 

(19) are unavailable.  The  work of Fried and others,  notably  Tatarsksil' and 

Yura and Lutomirski 2 9  still provides a solid  basis  for  understanding  the  problem. 

They  all  suggest  that  the  aperture  averaging  effect  can be described by a 

functional  dependence  involving  diameter, D,  correlation  distance, fi , and 

strength of fluctuations  for  the point detector  case.  Thus  the  variances  for log- 

amplitude  and  irradiance  measured with a telescope of diameter, D , can  be 

written 

, ,,, , ._. __ . . .. . .. - 
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o r  

The  correlation  distance,JE, is expressed as JKHo s e c  ci for  stellar  observa- 

tions at zenith  angle, 2 .  Altitude, H,,  can be considered a scale height for  the 

atmosphere,  the  altitude below which most of the  distortion-causing  turbulence 

lies.  The  factor d z  arises  from  the  relation of two-dimensional  spectral  density 

of amplitude, FA (K)  , to  three-dimensional  spectral  density of the  structure func- 

tion of refractive  index, BN ( K )  . A s  given by Tatarski l9 this  relation is 

FA ( K )  2 2 v k 2  c; (z)  (DN ( K )  s i n 2  ($) d z  

for  vertical  propagation,  subject  to  the condition that  

FA ( K )  has  its  maximum  near K = 1 / 6 .  The  two-dimensional  Fourier  Bessel 

transform of FA ( K )  is log-amplitude  covariance,c2 ( p )  , in  the  telescope  aperture 

plane.  Thus, 

.e 

where 
QN ( K )  = 0.033~-"/~. 
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A peak  near K = l/& in the  spatial  frequency  domain  means u$(P) will have 

a correlation  distance on the  order a. From  Fresnel  diffraction  theory 

will be  recognized  as  the  radius of first zone. Thus  the  general  statement  can 

be  made  that  turbulence of dimensions v% located a distance z from  the  receiv- 

ing  plane will have  the  largest  effect on u ' ( P )  . .e 

The  quantity 6 can  be  inferred  from a direct  measurement of u' ( P ) ,  

although  such  data is difficult to  obtain. A second  method  based on aperture 

dependence of CIV' will  be  used  instead.  Data of this  form is available as 

reported  in  Chapter IV. Use is made of equation (24) for CIV' at  aperture 

.e 

diameter D to  obtain 

[CIV21D = A, [+; c1vq C I V '  . 

The  aperture  averaging  factor A, is roughly  determined by Tatarski's  equation 

(13.28) for a quantity  he  labels G. Numerical  integration of G as CIV' approaches 

zero is presented  in  his  Figure 3 6 .  For  values of D / G  between 0 .2  and 3.0,  

G can  accurately  be  modeled by an exponential.  Thus, 

and 

Experimental  data  for CIV' as a function of aperture, D, is then  also f i t  with 

an  exponential by the  expression 

[CIVzID = A e-BD. 

Equating  these  two  expressions  for [CIV21 ,, yields a solution  for v'z in  terms 

of the  data-fit  parameter, B. B has  dimensions of length-' , such  that 

= - 1 . 3 3 / B .  
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This  becomes 

“’hH, = - 1.33 
B d’sec 8 

when  allowance for stellar zenith  angle, 8 ,  is made. 

Since A, also  depends on 6 as well  as D through  the  term /A H, s e c  6 , 

the  zenith  angle  dependence of [CIV’] wil l  change  for  various  ranges of the 

ratio D/v A H, s e c  8. Tatarski  points out  that  for  small  values of 8, [ CIV21D 

can  be  approximated by a secP 6’ , where P is a power  dependent  on aperture 

size. A s  D increases so should P from  the point detector  value of 11/6  to a 

value of 3.0 when D >> H, s e c  B . 

The  effect of exceeding  the  correlation  distance  has  been  measured by 

Protheroe3’. He obtained a 2.5 times  reduction  in CIV in going from a 2.54-cm 

diameter  aperture  to  a15.2-cm  diameter.  This  corresponds  to  a  reduction  in 

* ( p )  of 6.25. For  the15.2-cm-diameteraperture he  observed  the followihg 
“4 
dependence on zenith  angle : 

and 

The  calculated  correlation  distance  was  about 8 to 10 centimeters.  Protheroe’s 

actual CIV values  must  be  corrected  for  this  experimental  technique  in  order  to 

arr ive at CIV for zenith  viewing. When this is done the following average  values 

can  be  presented;  these  in  turn  predict  average U’ values. All  measurements 

were  taken with a 15.2-cm  aperture. 
4 

CIV 

Summer  0.14 0.0049 

- - 5 

Winter  0.16  0.0064 
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The  frequency  spectrum of irradiance is determined by the  same  factors of 

correlation  distance,  wavelength,  zenith angle, and aperture size. In addition, 

the  velocity  spectrum of upper  altitude  winds  becomes  very  important.  Increases 

in  zenith  angle or   aper ture   s ize  are reflected  in a decrease  in  magnitude of high 

frequency  components.  These effects are observed  in  spectral  densities of stellar 

image  intensity  and  log-amplitude. 

The  physical  basis of spectral-density  aperture  dependence  can  be  understood 

by considering  the  structure of irradiance  in  the  telescope  aperture  plane.  The 

structure  consists of a  continuous size  spectrum of bright  and  dark  patches 

changing with respect  to  time and  sweeping across  the  aperture. A s  the  aperture 

becomes  much  larger  than  the  correlation  distance  the  small  patches, which  have 

dimensions of the  order of the  correlation  distance and are  responsible  for  the 

high frequency  components,  produce  less of an  effect  due to  aperture  averaging. 

Larger  particles  and,  therefore,  lower  frequency  components do not suffer as 

much  averaging.  The  rate  at  which  the  pattern or  parts of the  pattern  are  swept 

across  the  aperture is determined by upper  altitude wind profile. In the  middle 

latitudes wind velocity is strongly  peaked  in  the 8- to 14- kilometer 

region of the  tropopause.  This is not surprising  since  turbulence  generation is 

readily  associated with  high  flow velocities.  Typical  velocities at the  tropopause 

are   f rom 20 to 100 meters  per  second and the flow is often referred  to as a jet 

stream. On the  basis of the  above  physical  considerations, a proportionality  to 

irradiance  frequency  can  be  asserted as follows: 

., 
f a  "N 

/AH, s e c  0 
Y 

where 

VN = component of wind velocity  normal  to  the  propagation  path. 
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Theoretical  analysis of irradiance  frequency  behavior  best  proceeds  in  the 

manner  revealed by Tatarski. H i s  equation (13.38) expresses  spectral  density 

of image  intensity  in  terms of an  integral  over  the  two-dimensional  spatial 

spectrum of irradiance and a filter function  for a circular  unobstructed  aperture 

where 
V, = component of wind velocity  normal  to  the  propagation  path , 

K = spatial  frequency  in  aperture  plane 

f = temporal  frequency, 

D = aperture  diameter,  

I, = average  irradiance, 
and 

F, ( K )  = two-dimensional  spatial  spectrum of irradiance. 

To arr ive at this point Tatarski  has  employed  the  "frozen  in"  theory of turbulence 

structure.  The  physical  basis of the  theory is the  assumption  that wind transports 

turbulent  structure  across  the  propagation path  before  the  structure  can itself 

change. In meteorology  this would be  equivalent  to  the  assumption of Taylor's 

h y p o t h e ~ i s . ~  The  result is that  irradiance, I(; t + r ), at point, x' , and time, t 

plus a delay, 7 can be simply  connected with I(;¶ t ) displaced by a distance 

iNr  by the  expression 

* 
I (2, t -I. 7) = I (2 - v, 7, t ) .  (34) 

Autocorrelation of irradiance, R, ( T ) ,  can then  be expressed with this  result as 

follows : 

I '  
<I G ,  t,'> 
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Equation (13.38) then  results  when'correction  for  circular  aperture is made and 

K is shifted  by an amount 2 n f/?,. 

Taylor's  hypothesis  has  been  verified  experimentally by several   researchers.  

For  the  particular  case of vertical  path  the  reader is referred  to  the  work of 

Gossard31. A natural  question  at  this point  would concern  the  range of validity 

of Taylor's  hypothesis.  Tatarski l9 has shown that  the condition for validity  can 

be  expressed as 

& < < L o  , 
where 

and 
Lo = outer  scale of turbulence, 

z = distance  from  detector  to  the  turbulence  generating  region. 

That is, the  dimensions of turbulence  structure  that  effect  light  propagation  should 

be  much less than  the  dimension of the flow as a whole. This is simply  one  side 

of the condition for  operating within the  inertial  subrange. 

Tararski  development of W, ( f  ) beyond  equation (13.38) assumes  a  constant 

value  for  strength of turbulence  and wind velocity, as might  reasonably  be  ex- 

pected  for a horizontal path.  Observations of starlight  require  a knowledge of 

the  interaction of all regions  in  the  vertical path. These  reZions  contain  different 

values of C, and V, and must  be  weighted  according  to  their  distance  from  the 

receiver.  This  can  be  accomplished  mathematically by  obtaining the  vertical 

propagation  relation  for F, ( K ) ,  inserting  the  expression  into  equation (33), and 

interchanging  the  order of integration so that  the K integration  can be performed 

first. F, (K ) is obtained  from FA ( K ) ,  the  two-dimensional  spectral  density of 

amplitude  in  equation (25), by noting the  relation 

2 

F, ( K )  4 I: FA ( K )  
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Thus, 
F, ( K )  2 8 ~ 1 :  k2 C i  (z)  Qn ( K )  s in' (e) d z  1 

= . 2 6 4  77 1: k2 c i  (2) K - " ' ~  s i n '  (g) d z .  

This is the  vertical  propagation  relation  for F, (k). 

Inserting  this  approximation  into  equation (33) yields 

W, ( f )  2 2.11 n2 k2 1 J, v,) J, 
s i n Z  [" t 4T2 f'/VC (Z)) Z 

2k 1 d z  

2 J1  (D/2 V ' K ~  -t 47~' f 2 / V i  (z )  

Dl2 V'K' t 47r2 f Z / V ;  (z)  
J ' d K  

(K' t 4 3  f ' / V i  (z ) )  J1  (D/2 V ' K ~  t 47? f 2 / V i  (2)) 
s i n 2  

2k D/2 /K '  t 477' f 2 / V i  ( z )  ] ' d ~ d z  

= 2.11 77' k' [ - F { f ,  VN (z) ,  D, k) d z .  

This  result  shows  that  irradiance  frequency  spectrum is expressable  in  terms of 

an  integral  over  the  turbulence  and  velocity  profiles  and a non-linear  function F 

{ f , V, ( z ) ,  D, k }. The  specific  form of F depends on the  interaction of wind 

velocity  with  aperture  shape and the  spatial  spectrum of turbulence  fluctuations. 

In Chapter V this  result  is  used  to  construct a model  for C i  (h). 
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Image Motion 

Fluctuations  in  the  position of image  center of gravity  result  from  atmos- 

pherically  induced  changes  in  the  phase or shape of the  incoming  wavefront. 

Most  changes  can  be  attributed  to  random  linear  phase shifts or tilts in  the 

wavefront.20  The  other  principal  wavefront  degradation is quadratic  in  form 

and  leads  to  focusing  errors,  thus  contributing  to  blurring of the  image.  For 

a point detector,  wavefront  tilt  will  result  in  displacement of the entire  image. 

T a t a r ~ k i ' ~   h a s   r e l a t e d  wavefront tilts to  phase  structure  function by examining 

a two-point correlation  (interferometer)  experiment,  Figure 2 .  

/ WAVE FRONT 

AX 
ANGULAR DISPLACEMENT  IN 

IMAGE  PLANE 

Figure 2. Interferometer case 

Consider two point apertures, A and B,  separated by a distance,  d.  Incoming 

starlight  represented by a wavefront  tilted with respect to d is brought  to a focus 

after  passing  through  the point apertures. Angle of tilt, A a radians, i s  equal  to 

the  angular  displacement of the  diffraction  pattern  in  the  image  plane.  Optical 

phase  shift, A 4  , between A and B, can  be  expressed  in  terms of this  tilt  angle by 
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where 
2 n  
X 

k =-. 

Since  the  phase  structure  function, D+ ( d ) ,  is defined as the  mean  square 

difference of phase  between  two  points, 

( (4,  - = (d) ' 

Then,  the  above  relation  for  tilt  angle  yields  the  expression 

The  angular  brackets  once  again  denote  an  ensemble  average.  Tatarski l9 em- 

ploys  his  expression  for  phase  structure  function  based on the Rytov approximation 

and the (OK) turbulence  spectrum as follows: 

D+ (d) = K k2 d5/3  C i  ( z )  d z 

The  value of K depends  on  the  relationship of d to  the  correlation of irradiance 

fluctuations, so that 

For  stellar observations  distance, z, along the  propagation  path  becomes 

z = h s e c  e ,  
where 

and 
B = zen i th   ang le  

h = a l t i t u d e .  

Then, 
D+ (d) = Kk2 d5/3 s e c  B C i  (h) dh . (43) 
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Substitution  in  equation (41) leads to the following expression  for  mean  square 

angular  fluctuations: 

( A c L ) ~  = Kd-1/3 s e c  B JOm C$ (h) dh . (44) 

This is just  the  variance of the center of gravity of the  diffraction  pattern  about 

the  optic axis. If the  stellar  observation is made with a telescope  instead of an  inter- 

ferometer,  wavefront  tilt  from all points  in  the  unobstructed  aperture will contribute 

to  image  motion. For large  apertures,  wavefront  tilt  in  different  regions of the 

aperture will be uncorrelated  and  lead  to a reduction  in  image  motion.  In  addi- 

tion, a non-uniform  irradiance  distribution will give  unequal  weights to  tilts in 

the  different  regions of the  aperture. As the  aperture  dimensions  exceed  the 

irradiance  correlation  distance  this  effect will diminish  in  importance  since  the 

average  irradiance  pattern  predominates  over  the  fluctuating  part.  The  resultant 

image  for a reasonably  large  aperture  telescope  (diameter  greater  than a few 

centimeters) will be  blurred  and  exhibit a center of gravity  displacement. 

In generalizing  to  such a case  from  the  interferometer  result above, Tatarski 

asserts  that  the  maximum  aperture  dimension  plays  the  role of the point aperture 

separation,  d, with the  only  other  change  being  in  the  value of proportionality 

constant, K. H i s  intuitive  feeling is apparently  correct, as will be shown  in  the 

following  analysis  due  to H ~ f n a g e l ~ ~ .  The  analysis  will  be  extended  here 

to include a numerical  prediction of image  motion  variance. 

The  instantaneous  position of image  center of gravity, T ( t  ), is just  the first 

moment of the  image  intensity  pattern 
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where is a two-dimensional  vector  in  the  image  plane  centered  on  the  telescope 

optical  axis.  Starlight  incident  on  the  telescope is represented by the complex 

field  distribution, u ( G ,  t ) , in te rms  of 2, a two-dimensional  vector  in  the  aperture 

plane.  Neglected here is the  optical  frequency  time  behavior of the  incoming 

wavefront.  The  imaging  process  from  aperture  to image plane as performed 

by the  telescope  optics is described  adequately  by  the  Fraunhofer  diffraction 

formula 

r m  

U ( 2 ,  t )  = c u (c, t )  exp  (-% * G) d c ,  

where 

I (2 ,  t )  = U*(Z t )  U(% t ) .  

The  normalization  constant, C ,  is determined by the  telescope  geometry  and  incident 

light  energy.  For a lens of clear circular  aperture and normalization  to  unit 

and 

where 

D = aperture  diameter, 

F = lens  focal  length, 

2 C =  9 

X D F  v'G 

and 
A = wavelength of light. 
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As demonstrated  in Appendix A and discussed  in  the  next  section on image 

size,  the  optical transfer function  in  terms of image  plane  coordinates  can be 

written 

where 

I(;, t )  exp (- 2n i7.2) d;, (47) 

- 
f = two-dimensional  spatial  frequency  vector. 

Image  center-of-gravity  can be expressed  in  terms of T(?, t )  by taking  the  first 

partial with respect  to 7 and evaluation at 7 = 0, as follows: 

Since 

ihen 

In order  to  express ;( t )  in  terms of irradiance and phase  in  the  aperture  plane, 

it j.s first necessary  to  express  T(7, t) in  these  quantities.  The  Fraunhofer 

formula,  equation  (46),  can  be  inserted  in  equation  (47) and the  mathematics 

performed  to  achieve  the  desired  result, as follows: 

I(;, t )  = u* (2, t )  U(2, t )  
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7 

Hence, 

o r  

-a 

m 

i. u (G, t )  u (G, t )  exp  [ - 1 d sd ;  dG 

The  complex  disturbance  in  the  aperture  plane u ( G )  is now expressed  in  terms of 

amplitude and phase by 

where 

q5 (G ,  t ) = optical  phase in radians 

and 

-4 

The  partial of T(f , t )  with  respect  to f can be  performed as follows: 
"8 

a T  (7, t )  - 4 
m 

u (G, t )  u* (G t AFT, t )  dG 
a 

a 7  7T D2 a f  
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t exp  [- i +  (G t AFT', t > I  

The  final  form  relating  image  center of gravity  to  irradiance and phase is 

obtained by noting  that  the  integral  over all of the  second  term  vanishes  since 

I(;, t) has  a zero value  outside  the  aperture  and by substituting  the  remaining 

term in  equation (48) 

m 
* 4 k F  I (;, t )  - C$ (;, t )  d;. r ( t )  = - a 

77 D2 a: 

Image  position  thus  depends on the  derivative of optical  phase,  which is  the mean- 

ing of wavefront  tilt,  weighted  by  the  irradiance  pattern. At this point  the  variable, 

t ,  will be  suppressed  for  ease of notation and the  variance of 7 calculated. 

The  distribution of tilts is symmetrical about zero  tilt,  thus  the  average 

value of image  motion, r , will be  zero.  The  variance of image  motion  ex- 

pressed  in  radians  squared,  through  division by F2 , is 

-+ 
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where 
.-I r is now measured in  radians. 

The  angular  brackets  once  again  denote an ensemble  average.  In  practice  the 

ensemble is formed by the  time  behavior o f?  (t). Convincing  evidence exists,  

both in  the  literature33 and in  the  author's  experimental  work,  that  irradiance 

and image  motion are sample  functions of independent  stochastic  processes. 

In  that  event 

If in  addition,  the processes are considered  stationary, w' = ; + ? and cl; = dy.  

Thus, 

4 

Because of stationarity,  the  expression 

is invariant  under  translation  to 
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The  expression  for <;f - Y> is of the  form 
- 

where 

Rv+(;) = autocorrelation of tilt, Vq5 
and 

To( G )  = autocorrelation of irradiance. 

The  additional  assumption of isotropy  allows  the  autocorrelations  to be expressed 

in   terms of I 1 .  Tilt  autocorrelation is simply  related  to  phase  autocorrelation 

through  the  vector  identity 

To(  171 ) can  be  modeled  fairly  accurately by the  assumption of constant  irradiance 

over  the  aperture.  The  integral 

reduces  to a result  for  the  overlap of two circles of diameter, D. This is equiva- 

lent  to  the  diffraction-limited  modulation  transfer  function  for  the  optical  system, 

Phase  autocorrelation is obtained from 

and  the  Tatarski  expression  for the  phase  structure  function, 
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m 

D,<lGl)  = 2 . 9 1  k2 1 j q 5 / 3  s e c  0 [ C i ( h )   d h ,  

SO that 

Insertion of equations (55) and (56) into  equation ( 5 3 ) ,  conversion  to  polar  coordi- 

nates,  and  simplification  leads  to  the  following  expression: 

Gp = - 4.1 1 [cos-l (;) - y /D (1 - (y/D) 2 ) 1 / j  2/3 dyx  (57) 
D2 0 

m 

sec q ( h )   d h .  

The first integral  can  be  transformed  into 

This  has  been  evaluated  numerically  on a digital  computer and  found very  nearly 

equal to 

- D5/3. 
8 

Up to  this  point,  the  analysis  has  been  in  terms of two-dimensional  angular 

distance Y in  the  image  plane.  For  comparison with  experimental  work  reported 

in  Chapter IV the  desired  quantity is one-dimensional  variance,  given by 
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<x2> = (r2 cos2 a) ,  
where 

.-) * 7 r = I X + J Y  

* 
= i r c o s  a -+ J r s i n  a ? 

and 
a = reference angle. 

Isotropic  behavior  for  optical  phase tilts in  the  aperture  plane  guarantees  iso- 

tropic  'image  motion, r is independent of a ,  and 

q2 cos2 a) = <r'> <cos2 a)  

= <r2> 1 / 2 .  

The  end  result  for < x 2 >  is 

<x2> = 0.56 D"I3 s e c  0 C i ( h )  dh ,  1 
and x is expressed in radians. 

Parameter dependence is the  same  as  for  the  interferometer  case but the  constant 

multiplier is reduced.  The  important  results  are  that <x2> is independent of 

optical  wavelength and only  weakly  dependent  on  telescope  aperture  diameter. 

Irradiance  fluctuations  discussed  previously  exhibit a rather  strong wavelength 

and  aperture  dependence.  Zenith  angle and turbulence  dependence  expressed by 

s e c  e iJ c i  (h) d h ,  

where 
8 =  s t e l l a r   z e n i t h a n g l e ,  

predict  that <x2) is proportional  to air mass  (sec 8) between source and observer 
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with the  strength of turbulence at each  altitude  weighted  equally. This one-dimen- 

sional  result will be  denoted ci, variance of image  motion, so that 

For  aperture  diameter less than v‘& the  phase  structure  function  (Tatarski) re- 

tains  the  same  form but is reduced by a factor of about two. For  this  case, how- 

ever,  the  assumption of a constant  irradiance  across  the  aperture could  not  be 

used. It is likely  that  the  resultant  aperture  dependence would differ  from D-1’3 ,  

For  D < X,, the  inner  scale of turbulence,  even  the  phase  structure  function  de- 

parts  from D-’ ’3 dependence. In the  other  limit as D grows  very  large,  the 

upper bound on the  phase  structure  function and thus <x > is determined by the 

outer  scale of turbulence.  This  limit is ill-defined  and  may  be  encountered as 

close as a meter 3r as distant as a kilometer. 

Time  behavior of image motion is described  statistically by autocorrelation 

analysis of a certain length sample  record of data. As a first approximation  con- 

sider  the  interferometer  case  discussed  previously  in  the  determination of image 

motion  variance.  Normalized  phase  difference  autocorrelation, R 4 ( T ) ,  for  the 

spatial  separation,  d, and variable  time lag, 7 ,  is 

d 

The  denominator i s  by definition  phase  structure  function  for  separation,  d.  The 

numerator  may, as outlined by K ~ l c h i n s k i i ~ ~ ,  be  expanded  into a sum of structure 

function te rms .  
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Thus, 

In  order  to  evaluate  the  structure  functions,  certain  assumptions  must  be  made. 

(1) A s  in  the  analysis of irradiance  time-dependence,  consider  "frozen-in'' 

turbulence.  The  turbulence  inhomogeneties are transferred by a wind of speed V, 

parallel to the  line  connecting  point  apertures A and B. 

(2) Assume a single-layer model. The  turbulence is located at a distance  z 

with  strength C i and results  in a phase  structure  function 

D$ (d) = 2 . 9 1  k 2  d5'3 z C i .  

(3) The  turbulence  process  is  assumed  to  be homogeneous  and  isotropic as 

before. 

The  value of phase at point A and the  time  A + 7 , +A (t + T ) ,  is the  same as that 

at the  point A - V, 7 and the  time  t,+A-VN ~ (t). Likewise, 

and 

43 



These  relations  allow  the  structure  function  terms  in  equation (60) to  be  expressed  in 

t e rms  of D4 and an argument  that  includes VN r along  with  the  point  aperture 

separation, d ,  as follows: 

and 

o r  v 5:3 

(1+%) t ( I L T  vN I) 5 / 3  v, 7 5  /3 
" R ( 7 )  = 

+d 2 d 

The  result is independent of strength of turbulence,  distance  to  the  turbulence, 

and  optical  wavelength  and  depends  only on aperture  separation,  d, and the wind 

speed, V,. The  result, of course,  holds only for 7 values  such  that  the  phase 

structure function  argument is within  the  inertial  subrange. 

The  total  effect of many  such  layers  can  be  examined by adding the  auto- 

correlation  for  each  layer weighted by the  strength of turbulence  and wind velocity 

for  that  layer.  Thus, 
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As with  the  single-layer  result  the  phase  difference  autocorrelation is identical 

to  image  motion  autocorrelation.  This is evident  since 

@ , - q 5 A = k d A a  
and 

R+d (7) Ra (7) = Rx (7), 

where 

and 
a =  wavefront tilt angle 

x = diffraction  pattern  angular  shift  in  one-dimension. 

The  Fourier  transform of R x ( 7  ), the angular  shift  autocorrelation,  may  be 

expressed  in a form  s imilar   to  equation (38) for  irradiance  spectral  density. 

The first step is to  express R, ( 7 )  in  terms of image  motion  variance, c; . From 

equation (58) 

where 

D = aperture  diameter 2 fi . 
Noting that 

.56  D+ (D) 

k 2 D 2  
c 2  = 

yields  the new form  for R,(T) , as follows: 

o r  

Here the wind velocity which depends on optical  path  distance, z, has  been  brought 

inside  the  integration.  Once  again  the  passage  from  summation  to  an  integral 

over z has  been  made.  The  Fourier  transform of Rx(7), 
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can now be  expressed as follows: 

where  the 7 and f integrations  have  been  interchanged.  This is the  result 

used  in  Chapter V to  construct  turbulence  profiles. 

Image Size 

Specification of image  size  or  profile  is  the  final  step  in a description 

of the  atmospherically  distorted stellar image.  Size  determination and the whole 

investigation of image  quality are handled  best  through  the  use of optical  transfer 

function  techniques.  The  transfer  function of an  optical  system,  OTF, is defined 

as the  two-dimensional  spatial  Fourier  transform of the  image  spread function. 

In  the  situation  examined  here,  optical  system is composed of telescope  optics 

and atmosphere. Magnitude of OTF is a measure of reduction  in  contrast  suffered 

by  each  Fourier  component of the  object after transmission  through  the  entire 

imaging  system.  It is a function of the  transform  variable,  image  plane  spatial 

frequency, f.  The  variable, f ,  has  dimensions of cycles  per  unit  length.  Multipli- 

cation by system  focal  length, D, allows  spatial  frequency  to  be  expressed  in 

cycles  per  radian  field of view. This  will  be  denoted, w . This, of course, is 

easily  related  to  cycles  per  arc  second.  Relationship  between OTF and image 

intensity  distribution are derived  in Appendix A for  the  particular  case of s ta r -  

light, i.e. , point source at infinity and incoherent  light.  The  result, if T(T) 

i s  the  optical  transfer  function,  OTF,  is 

46 



J- m 

* 
f = spatial  frequency  vector, 

x = position  vector, 

I ( 2 )  = image  intensity. 

where 

and 
+ 

In general,  T(2) is complex  and  can  be  written  in  terms of a modulus  and 

phase as 

For  real, symmetric  images T( 7 )  is real and positive , and 

T (7) = M (7). (65) 

Analysis  may  proceed  in  terms of the  modulation  transfer  function, M ( T )  o r  

MTF. Both phase and amplitude  effects  in  the  atmospherically  distorted  wave- 

front  contribute  to MTF. Phase  effects  can  be thought of as wavefront tilts o r  

bends.  These  lead  to  image tilt and blurring  respectively, as previously  noted. 

Amplitude  effects create a random  apodization of the  aperture,  i .   e. , they  weigh 

the  phase  effects non-uniformly. 

Just as phase and amplitude of the  optical  wavefront are functions of t ime 

so  is MTF.  Thus, 

M(7) = M(7, t ) .  (66) 

This  will  continue  to  be  denoted M ( 7 )  with  the  time  dependence  understood.  Over 

a long  period of time, as in long  exposure  photography,  the  resultant  image  can 

no  longer  be  described by the  telescope  diffraction  pattern but  will  be a relatively 

large  blur  circle.  Under  this  condition  the  symmetry  assumption is not  too 
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severe.  Time-averaging and the  random  character of the  distortions  tend  to 

average  out any  non-symmetries  that  appear.  For  very  short-exposure  times, 

all effects of image  motion are frozen  out,  leaving a sharper well-defined  image. 

While  this  image  may  approach  the  diffraction  limit it will  in  general  exhibit a 

residual  blur. A recent  analysis  due  to  Fried35  has shown that this blur is 

primarily a focusing e r ro r .  Near the  optical axis this is a symmetric  aberration 

caused by a quadratic  term  in  the  description of wavefront  shape.  Unsymmetrical 

abberations,  similar  to  coma, are numbered  third  in  order of importance.  This 

argues  in  favor of retaining  the  symmetry  assumption  above. A much more 

serious  question  concerns  the  existence of spatial  invariance  in  the  image  plane 

for  the  short-exposure  case.  This is the  concept of an isoplanatism  patch as 

mentioned  in Appendix A. If such an area,   in which image  spread  function  depends 

only on the  separation of two measurement  points,  does not exist  the  mathematical 

formalism  breaks down and a transfer function  cannot  be  defined. It is not 

necessary  that  the  isoplanatic  region  encompass  the  entire  telescope  field,  just 

the  general  vicinity of the  image.  This may  be  quite a reasonable  assumption 

although further  verification is needed. 

For a cascaded  optical  system  such as the  combination of atmosphere and 

telescope,  the  resultant  MTF  is  just  the  product of individual MTF’s.  Thus, 

where 

(M (Y),, > = observed  MTF  averaged  over a certain  t ime, 
t i m e  

and 
M ( h T  = telescope  optics  MTF which is constant  in  time, 

(M(7) > = atmospheric  MTF  averaged  over  the  same  time as above. 
A time 

Telescope  MTF  based on the  assumption of diffraction-limited  optics, as set  forth 

in Appendix A ,  is 
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Once  again  the  ensemble of systems  necessary  for a correct  averaging  process 

is formed by a certain  time  sample of data. 

Several  different  theoretical  approaches 2 4 s  36 have  resulted  in  the  same  ex- 

pression  for  the  atmospheric  part of the  long-term  MTF,  namely, 

where 

LT = long-term  time  average. 

The  wave  structure  function,  denoted  Dw(r), is the  statistical  description of atmos- 

pheric  effects on the  propagating  wave.  It is the  sum of log-amplitude and phase 

structure  functions  mentioned  previously, i. e .  , 

Tatarski's  expression  for D, (r) is very  similar  to D4 (r) of equation (56). In fact, 

beyond the  log-amplitude  correlation  distance, G, they are equal.  Thus, 

and 

D, ( r )  = 2 . 9 1  k 2  r5l3 [ C i  (z)  d z ,  r k - .  (73) 
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In both cases  the  assumption is made  that 

A s  Fried 36 has pointed  out,  the  conditions on r may be replaced by the  same con- 

ditions on telescope  aperture  diameter, D. The  last  equation  applies  in  general 

for  telescopes of diameter 

D 2 10 centimeters, 

and  in  particular  for  the  telescope  used  in  the  observations  reported  in  Chapter 

IV.  Spatial  variable, r ,  in  the  aperture  can  be  expressed in terms of image 

plane  spatial  frequency, w ,  by 

r = h & I .  

The  final  desired  form  for D, (a) is 

where C is a constant  for a particular  set of data and expresses  the  parameter 

dependence.  The  long-term  atmospheric  MTF  becomes 

Spatial  frequency  dependence is contained  in  the ,513 factor.  Image  size  de- 

pendence on C is revealed by applying the  Fourier  transform  result of Appendix A, 

so that 
Prn 
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Here for convenience w is expressed  in  cycles  per arc second and distance, S, 

in  the  image  plane is expressed  in arc seconds.  The 5/3 power law is close  to a 

square  power  law and this  approximation  will  be  made. * When this is done  the 

rather  complicated  integral above can  be  easily  evaluated as follows: 

=- exp (- ) . 2rT s 2  

C c 12 7 T 2  

This is a Gaussian  shape with variance, u:  , such  that 

0: = C ' 4  772 

Here 0: is  seen to  be  proportional  to  the  negative  one-third  power of wavelength, 

secant of zenith  angle, and the  integrated  strength of turbulence.  This is essentially 

the  same  result  obtained for variance of image  motion,oi, with the weak 

dependence on aperture  replaced  here  with a weak  dependence on wavelength. 

Short-term  MTF  has  also  been  treated  in  the  literature. An expression  that 

is similar to that  discussed by Fried36 is 

<M(u)*)ST = exp { - Dw ( w )  [ 1 - 1 . 0 2 6  (%''I} 

*See Appendix C. 
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The w513 factor is the  same as that found in  long-term  MTF and dominates  the  be- 

havior of <m(w),>,, for  w < < (X/D). Inclusion of the  second  term with i ts  w113 

factor  modifies  the  behavior  for  large  spatial  frequencies, w 5 (X/D). The  factor 

X/D is the  resolution cutoff spatial  frequency  for a telescope of diameter D. This 

may  be  observed by substitution  in  equation (68). Since short-term  MTF  depends 

on  the  particular  telescope  diameter  used, <m(w)A>ST is not a true  atmospheric 

MTF. A s  Fried  has pointed  out, an MTF  can be assigned  to  atmosphere only in 

the  long-term  case. 

Long-term  MTF  can be measured  experimentally.  The  length of time  must 

be long enough to  include all the  effects of image  motion,  however.  This  implies  an 

averaging  time of tens of seconds,  while  the  typical  MTF  measuring  device  com- 

pletes a scan  in a fraction of a second.  The  experimental  device  described  in 

Chapter V employs  instead  an  average  measurement of many  short-exposure 

images.  This  data  can  then  be  combined with a simultaneous  measure of image 

motion,  through  the  analysis  presented  below,  to  achieve  an  estimate of long- 

t e rm MTF.  This is the  desired  result  since it is independent of all lens  param- 

e te rs  and may  truly  be  assigned  to  the  atmosphere. 

Long-term  MTF  can  be  defined  in te rms  of short-term MTF and a transfer 

function  assigned  to  image  motion by 

If image  motion and short-term  blur can be  considered  uncorrelated, it follows 

that 
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Following the  lead of Hufnage13' the image motion MTF can  be  expressed in  

terms of one-dimensional  image  motion  variance, G-: , by 

where u' is determined  from a sample of data  whose  length  roughly  corresponds  to 

long-term  time  average. 

A rough  check  on  this  procedure  can  be  made by assuming  that << M ( w ) ~ >  > 
ST LT 

can  be  adequately  represented by equation (77) for <M (w)A>sT alone.  Here  the 

averaging  over  the long te rm is applied  to  the  wave  structure  function  appearing 

in  the exponent of <M > . Thus, 
ST 

o r  

o r  

but 

Hence, 

(" (u)M>LT 2 exp {- 4 r r 2  u2 1.49 D-1,'3 sec B 
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Contents of the  exponential are within a constant  factor  equal  to  the  expression 

for  one-dimensional  image  motion  variance,m: , derived earlier. 

Accurate  determination of long-term MTF affords  the  observer a unique 

opportunity to  specify  optical  performance of the  atmospheric  channel. Here 

with  one result,  independent of the  optical  system  used  to  determine it, resides 

a powerful  tool  for  predicting  the effects on larger  and more  complicated  systems. 

In  the following two chapters,  the  experimental  part of this  research will  be  dis- 

cussed and data  presented. An attempt  will  be  made  to  construct a turbulence 

profile.  The  strength and shape of this  profile  remains as the  largest  single  un- 

known in all of the  preceeding  theory. 
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CHAPTER I V  

ACQUISITION OF EXPERIMENTAL RESULTS 

Stellar Image  Monitor  Apparatus 

Experimental  data  for  this  thesis  research is provided by a device  developed 

by the  author and  fellow  workers at Goddard  Space  Flight  Center  during 1968 and 

1969. It was designated  the  Stellar  Image  Monitor  and was designed  to  provide 

quantative  data  for  optical  site  selection.  The  Stellar  Image  Monitor,  or SIM, 

is based on a design  published by R a m s a ~ ~ ~  and a technique  described by 

Lindberg s9. Ramsay  performed  some  experimental  work with starlight and 

later C o ~ l m a n ~ ~ ~  4 1  used  the  device  extensively  for  horizontal  optical  propagation 

studies. SIM hardware  produces  three  analog  voltages  containing  information  on 

image  intensity,  size, and  motion.  These  voltages  can  be  analyzed  for  the  desired 

statistics of the  stellar  image.  The  heart of the  device is a  modulation  transfer 

function  measurement  performed by square-wave  modulating o r  chopping  in  the 

telescope  focal plane.  Chopping is performed at a selected but variable  spatial 

frequency.  Operation at various  spatial  frequencies,  detection of the chopped  light, 

and electronic  processing yield various  points  for  an  MTF  curve.  Image  intensity 

is monitored by low-pass  filtering of the chopped  signal.  Image  motion  information 

is derived  from  electrical  phase  comparison of signals  generated  in chopping the 

stellar  image and a reference  light  source.  The Goddard  device  differs  from  the 

original  Ramsay  design  in  the way spatial  frequency is varied, in electronic 

processing, and in  data  collection and  reduction.  Data  in  the  form of analog 

voltages is recorded in the  field on  magnetic  tape. Off-line processing by digital 

computer  results in a statistical  record of the  recorded  data,  facilitating  compari- 
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son with  theoretical  analysis  presented  in  the  previous  chapters.  Data  results 

presented  in  this  Chapter  were  obtained  between fall 1968  and spring 1969  while 

the SIM was  being  field  tested at the  Goddard  Optical  Research  Facility.  The 

device is presently  in an operational  program of site evaluation at the  Smithsonian 

Astrophysical  Observatory at Mt. Hopkins,  Arizona. In reporting  results, a 

concentration will be  placed  on  those  deemed  most  effective  inestimating  strength 

of turbulence  along  the vertical  path and in  testing  the  theory.  Figure 3 illustrates 

the  experimental  concept  and  Figures 4 through 6 are photographs  of  the  equipment 

used. 

TURBULENT ATMOSPHERE 

DETECTOR 1 / 
PACKAGE 

MOUNT  AND 
DRIVE MAGNETIC TAPE 

RECORDER 

VICE - L 

TAPE 
PLAYBACK  DE' 

TIME CODE I lkw I I GENERATOR 

Figure 3. Stellar  image  monitor  experiment  concept 
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Figure 4. Stellar  image  monitor  field  equipment 
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Figure 5. Detai l   of   e lectronic  data  col lect ion  equipment 
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Figure 6. Detai l  of electronic  data  collection  equipment 



In  the SIM, starlight is collected  by a 6-inch diameter  doublet  lens  system 

of 48-inches  focal  length. Figure 7 indicates  the  optical  system  components. A s  

converging  starlight  enters  the  experiment  package, it encounters a partially 

si lvered  mirror.  This surface,  acting as a beamsplitter,  allows 30 percent of the  light 

to  pass through and reflects 60 percent.  Transmitted  light  enters a pentaprism 

and is directed  through a corrector  plate  to  focus on a ring and crossline  reticle. 

The  field-of-view  corresponding  to  the  ring's  diameter is 14 minutes of arc .  

Observation of the  stellar  image  on  the  reticle  allows  pointing  of  the  telescope 

to  insure  on-axis  operation. Light reflected  by  the  beamsplitter is reflected 

again by a front  surface  mirror and  allowed to  come  to  focus. A microscope 

objective  serves as relay  optics  to  focus an enlarged stellar image on a rotating 

glass disk. An eyepiece and mirror  assembly mounted in a sliding  tube are  used 

to  visually  check  image  quality and insure  proper  alignment of the  image on the 

glass disk.  The  disk is composed of alternate  clear and  opaque  pie-shaped 

sectors  as detailed  in  Figure 7. Each  sector  subtends one-half degree.  The 

pattern  was  produced at Goddard by photographic-reduction and etching from a 

machine-drawn  original.  The  disk is belt  driven  from a D.C. motor-servo  system 

at a constant rate of 517 rpm. Speed regulation is better  than 0 . 5  percent.  Light  passing 

through  the  disk i s  thus  square-wave  modulated with a time  frequency of 3.1 KHz, 

determined by motor  speed and number of sectors  on  the  disk.  The  spatial fre- 

quency of chopping is inversely  proportional  to  the  distance  from  the  center of the 

disk and is determined by sector width at a given  distance.  Since one clear and one 

opaque sector  determine one  cycle of chopping, the  spatial  frequency  in  cycles 

per  mill imeter is the  reciprocal of the width of two sectors.  Spatial  frequency 

can  be  made independent of lens  parameters by multiplication by system  focal 

length.  Cycles  per  millimeter  become  cycles  per  radian field-of-view or  cycles  per 

a r c  secoad.  Starlight is brought  to a focus one inch  from  the  center of the  disk. 
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Figure 7. Optical  system  and  detector  package 

For unity  power relay  optics  the  spatial  frequency of chopping is 2.26 cycles  per 

millimeter or  0.0134 cycles  per  arc  second.  Higher  powers  effectively  increase  the 

spatial  frequency by enlarging  the  image on the  disk. Below are listed  the  linear 

increases  in  spatial  frequency  achieved with various  powers of microscope 

objective. 

Light transmitted by the  disk  passes  through an optical  bandpass filter and is 

received by a photomultiplier  tube.  The  photomultiplier  tube is an EMI Model 

9558B with S-20 response.  The filter is a Corning glass  filter,  Number CS 3-71. 

The  combined  spectral ha l f  width is approximately 1 2 0 0 i  centered at 5 0 0 0 i  

(Figure 8). 
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Table 1 

Microscope  Objective  Power 

1.0 

2.6 

3.5 

4.0 

6.0 

10.0 

21.0 

45.0 

60.0 

98.0 

Spatial  Frequency 

(Cycles/Arc Second) 
~ . . - - . -. _. . . 

0.0134 

0.0348 

0.0469 

0.0536 

0.0803 

0.134 

0 .281 

0.602 

0.803 

1 . 3 1  

0.8 '"r 
W 

& 0.6 
W 

O.* t 
- 

7200- 

WAVELENGTH  (ANGSTROMS) 

Figure 8. Combined  relat ive  spectral  response 
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Light from a small  D.C. powered  lightbulb is also  focussed on the  disk  to 

act as a phase reference source. A thin  glass  plate in the  converging  light  from 

the  bulb  can  be  tilted  to  adjust  the  position of this  image on the  disk. Chopped 

light is received by a PIN-10 photodiode. A field effect transistor  preamplifier 

and  biasing  network  prepares  the  photodiode  signal  for  entry  into  the  electronic 

preprocessing  system.  The  photomultiplier  signal is developed across a one 

megohm  load  resistance and  unity  gain  preamplifier stage. 

Electrical  signals  from  the two detectors  are  fed  into an electronic  pre- 

processing  system  (Figure 9) .  The  main  function of this  device is to  produce 

three  voltages  containing  information on image  intensity,  modulation  index,  and 

motion.  Operational  amplifiers are the  primary  circuit  constituents.  The 

entire  instrument is D. C.  powered  by a regulated  power  supply  providing 27 

volts  at  approximately 0 .2  amps. Solid state  voltage  regulators  provide  the 

plus  and  minus 12 volts  required  for  operational  amplifier  biasing. In  addition, 

a programmable  D.C.  -to-D.C.  converter  provides up to 2000 volts  for  the 

photomultiplier  tube. 

The  positive  going  input from  the  photomultiplier  preamplifier stage is in 

the  form of an amplitude-and  frequency-modulated  square wave at  the chopping 

frequency, 3.1 KHz. This signal and the photodiode  signal are not perfect  square 

waves  since  image  size is not  negligible  compared  with  sector  width. Only the 

fundamental  sine  wave  component of the  square wave is of interest,  however. 

A s  shown in  Figure 9, the  photomultiplier  signal  proceeds  through two inverting 

D.C. amplifier stages. The first has a gain of 10 and  the  second  incorporates a 

variable  gain  from one of 20. At  this  point,  the  amplified  signal  proceeds 

two  ways.  The first path is through a low-pass filter of the  multiple  feedback 
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design  having a corner  frequency of 200 Hz. The filter's output is just  the meas- 

urement of total  image  intensity and its scintillation.  This D.C. or low-frequency 

information  output 1 , is also  used in the  determination of modulation  index.  The 

second  path is through a multiple  feedback  bandpass filter centered at the chop- 

ping  frequency.  This  frequency  belongs  to  the  fundamental  sinusoidal  component 

in  the  square  wave.  The 3-db bandwidth of the  filter  is  plus o r  minus 200 Hz 

around  the  center  frequency. An analog  divider  receives the outputs of both 

fi l ters and  performs the  operation A .  C .  divided  by  D. C . The  output of the 

divider is the  normalized  chopping  frequency  component,  that is, the  strength 

of the  component  with respect to D. C . A s  the image  size  grows  larger due 

to  turbulence or  as spatial  frequency is increased,  the A .  C . component 

suffers a reduction.  Size  changes  affect  only  the  A.C.  component  while  inten- 

sity  changes o r  scintillation are present in both A .  C . and D. C.  components 

and  cancel out in  the  division  process.  The  divider's output is received by a 

peak  detector which produces a D.C.  voltage,  output 2, proportional  to  the 

modulation index or  relative  strength of A .  C.  to D.  C . Fluctuations in  modula- 

tion  index  can  be followed from D. C. to  the corner  frequency of 200 Hz. If the 

peak  value of A .  C.  is  equal to  the D. C.  signal  strength,  the  modulation  index is 1.0. 

Motion of image  center of gravity is determined by phase  comparison of 

signals at the chopping frequency, 3.1 KHz,  from  the two detectors. As the stellar 

image  moves on the  chopping  disk, it produces a waveform  shifted  in  phase with 

respect  to  that  from  the  phase  reference  source with its stationary  image.  The 

preamplified  reference  signal  from  the photodiode is first sent  through a bandpass 

filter identical  to  that  used  in  processing  the phototube  signal.  The  outputs of 

both  bandpass fi l ters are sent  through  limiter  stages to provide good, clean 

square  waves. An integrated-circuit  phase  comparator  receives  the  square 

waves  and  outputs a pulse  train whose  duty  cycle is proportional  to  the 
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relative  phase  of  the  signals. An RC averaging  network  with  response  from 

D.C. to  the  corner  frequency of 200 Hz measures  the duty  cycle.  Relative  phase 

of the  two  signals is just  the relative position of the two images on the disk along 

a direction  perpendicular  to a disk  radius. Thus, output 3 becomes a voltage 

proportional  to  one-dimensional  motion of stellar image  center of gravity. 

The  results of electronic and  optical  calibration tests of the  preprocessing 

system are given  in a following  section.  These tests were  necessary  to  insure 

proper  operation of the  electronics and to  relate the  voltage  outputs  to  parameters 

specifying  image  quality. 

In  order  to  preserve  the output data of the  electronic  preprocessing  system 

in a form  suitable  for  data  analysis,  recordings are made on magnetic  tape. For  

this  purpose,  an  Ampex FR-1300 portable  instrumentation  tape  recorder was  

incorporated  into  the  system.  This is a seven  track  machine equipped in a 

standard IRIG configuration for one-half inch wide magnetic  tape.  The  three  outputs 

of the  electronic  preprocessing  system have  bandwidths  from D.  C.  to 200 Hz. 

The D.C. requirement  means a frequency-modulation (FM) recording  scheme  must 

be  used.  Time  signals  are  also  recorded  in  order  to  properly  characterize and 

identify  the  data.  The NASA one-per-second  and  one-per-minute  binary  time  codes 

are the  ones  used.  These  can  be  recorded  in  the  direct (AM) mode.  Recording is 

done at a tape  speed of 7.5 inches  per  second.  The F M  and AM record bandwidths 

are from D.C. to 2.5 KHz and from 50 Hz to 38 KHz,  respectively. A 10 KHz 

sine  wave is also  recorded  in  the  direct mode as a reference  signal.  Tape  speed 

errors  made  in  data  taking  can be eliminated  during  automatic  data  processing 

by using  the 1 0  KHz reference  signal. Such e r r o r s  would result  from  fluctuations 

in  power-line  frequency.  Signal-to-noise  ratio  specifications  for  the  tape  recorder 

are greater  than 40 db at the  tape  speed  used. 
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Operation of the Stellar Image  Monitor  Experiment  involves  nighttime stellar 

observations at various  zenith  angles,  azimuths,  and  different times of night. 

Two operating  personnel are required,  one  to  adjust  telescope pointing and op- 

tical alignment  and  the  other  to  monitor  the  electronics  and  operate  the  tape  recorder. 

In  acquiring a star, successive  use is made of a wide field  viewfinder and narrow 

field, high-power  eyepiece.  This  insures  operation of the  telescope  on-axis.  The 

focussing and centering  microscope  objective  holder is then  used  to  bring  the 

stellar image  to  the  correct  focus and position on the  chopper  wheel.  This  process 

is monitored by the  sliding  eyepiece.  After  proper  alignment is achieved,  the 

eyepiece is removed and starlight  enters  the  detector  package. Once the photo- 

multiplier high voltage  control and D.C. amplifier  gain  have  been  adjusted  for  the 

proper  intensity output  voltage,  the  instrument is ready  for  data  recording. 

Data-taking  procedures are tailored  closely  to  the  demands of data  reduction. 

To this  end,  calibration  voltages, a star identification  code, and background runs 

are recorded on magnetic  tape  along with the  data,  time, and reference  signals 

(see Figure 9). A voice-edge t rack is used  to  note  experimental  parameters  such 

as spatial  frequency,  telescope  aperture,  photomultiplier  tube high voltage, and 

amplifier  gain.  Data  taking is divided for  convenience  into  four  distinct  categories. 

A tape - is the  largest  category. It is the  contents of one reel (2,500 feet) of mag- 

netic  tape and may  include  data  from  several  nights,  the  second  category.  The 

third  level i n  called a star. It  includes all data  taken  in  succession with a particu- 

lar stellar source. Included here  may  be  from one to  ten  data  runs,  the  final 

category. 

A data  run  begins when the  tape  recorder is turned  on and ends  with  tape re- 

corder off.  It is  characterized by a three-digit  data  run  number  and a particular 
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spatial  frequency. Nominal  operation would include  five  data  runs  per  star, 

each conducted at a different  spatial  frequency. Below is listed  the  format of 

a data  run. An example is given  in  Figure 10. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

Table 2 

Data Run Format 
. .  .. . 

Event 
_I ." . . ~ -  

START RECORDER 

Tape  leader at ground  potential 

Positive 6 volts  calibration 

Ground  potential 

Negative 6 volts  calibration 

Star  number  hundreds  digit 

Star  number  tens digit 

Star  number units digit 

Data 

Defocus  data 

Background  data 

STOP RECORDER 
.~ _. . ". .. _ _  . " - 

Length  (Seconds) 
~. ". - 

20 

10 

5 

5 

3 

3 

3 

10 to 600 

5 

5 

The first seven  events are fed  automatically  to  the  tape  recorder by a com- 

mutator  arrangement.  The  commutator  selects  the  desired D.C. voltage  level 

for the  specified  length of time.  Tape  leader  allows  time  for  the  tape  recorder 

transport  mechanism  to  come  up  to  speed and stabilize. Known calibration  voltages 

are recorded  to  provide a voltage  standard  in  data  reduction.  The  three star 

numbers are the  hundreds,  tens, and units  digits  that  comprise  the  number as- 

signed  to a particular star. This  number  may  be found in  Apparent  Places of 
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Figure 10. Data run format 



Fundamental Stars. Each  digit is a certain  percentage of plus  calibration  volt- 

age. For example,  the star number 297 would comprise  voltage  levels 20, 90, 

and 70 percent,  respectively, of plus  calibration.  Actual  star  data is taken  from 10 

seconds to 10 minutes.  Defocus  data is generated when the  telescope  operator 

deliberately  defocuses  the  stellar  image on the  chopper wheel. This is used  to 

characterize  the modulation-index  data.  Background  data  requires  the  operator 

to point the  telescope so that  the star is just beyond the field-of-view.  Thus, all 

the  effects of stray  light, sky background, and electronic  offset  can be recorded. 

Data from  the  three  outputs of the SIM is recorded  simultaneously  in  each 

data  run.  Time and reference  signals  are  recorded  continuously without  the 

calibration  voltages and star code. Below is a listing of the  seven  tracks of the 

magnetic  tape  recorder,  their  functions,  and  modes of recording. 

" 

Track Number 

1 

2 

3 

4 

5 

6 

7 

Table 3 

Tape  Recorder  Format 

Function 

Spare 

10 KHz reference 

Image  motion  data 

Intensity  data 

Modulation  index  data 

BCD time  code 36 bit 

BCD time code 28 bit 

Record Mode 

FM 

AM 

FM 

FM 

FM 

A" 

AM 

The  electronic  equipment  described  above is mounted  in a standard 5-foot 

instrumentation  rack as shown  in  detail  in  Figures 5 and 6. The  following items 

are included: 
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(1) Electronic  preprocessing‘system . 
(2) Calibration  voltage  commutator. 

(3) Tektronix  type 422 oscilloscope. 

(4) Newport  Labs ser ies  200 digital  panel  meter. 

(5) Trygon HR40-3B D.  C. power  supply. 

(6) Electro-Craft E-650 motor  speed  control  system. 

(7) Ampex FR-1300 instrumentation  tape  recorder. 

The  oscilloscope and digital  panel  meter are used  to  monitor signal levels during 

data  recording.  Time and reference  signals  must  be  fed  into  the  rack  from an 

external  time  code  generator. 

The  three  outputs of  SIM are randomly  fluctuating  voltage  levels  representing 

optical  fluctuations in the stellar image  being  monitored.  Similar  to  the  atmos- 

pheric  mechanisms  responsible,  these  optical  fluctuations  have a large  dynamic 

range and periods as short as several milliseconds.  In  Figure 11, sample  chart 

recordings of each of the  three  data  tracks  are  presented.  Clearly,  one  must 

turn  to  statistics  in  order  to  characterize  the  data.  Consideration  must  be  given 

to  averages,  variances,  correlations, and power  spectrums. 

Once data  has  been  recorded  on  magnetic  tape,  the first step  in  data  reduc- 

tion  converts  the  information  into a digital  format. For this,  the facilities of the 

Information  Processing  Division at GSFC are used. Analog data  tapes are played 

back  through  an  analog  to  digital (A/D) conversion  unit and digital  tapes are pro- 

duced. A/D sampling is at a rate of 4 KHz. A sample is taken  every  quarter 

millisecond.  The  data  tracks are sampled  sequentially with the  -net  result  that 

all of the  three  outputs of the SIM plus a spare  fourth  track are sampled  every 

millisecond.  Fundamental  sampling  theorems  require  that  the  sampling rate be 

twice the  highest  frequency  component  in  the  data.  This  insures  correct 
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Figure 11. Typical  data  signals 

representation  in  digital  form of the  original  data. Sampling 1000 times  per  second 

allows  the  data  to  contain  frequencies as high as 5000 Hz. This is more  than 

enough to contain  the 200 Hz bandwidths of the SIM electronics  and,  from  pre- 

vious experience,  the  expected  bandwidths of optical  fluctuations.  The 36-bit 

one-per-second  time  code is also  digitized and  used  primarily as a bookkeeping 

device.  The  digital  tape  contains  information  in  binary  coded  decimal  format and 

is ready for  computer  processing. 

Processing is done  on an IBM system 360/91  computer  through  programs 

written  in the Fortran IV language.  The  following  description of data  analysis 

concentrates not on specific  program  instructions  but  rather on the  method of 

statistical analysis.  This  method  conforms  to  standard  practices  in  statistical 

analysis.  The  method is best  examined by following a sample  data  run. 

72 



The first information  input  to  the  computer  for  each  data  track is a series 

of samples of the  positive,  zero, and negative  calibration  voltages v1 , v2 , and 

v3.  As mentioned  previously, v1 = +6.0 volts , v2 = 0.0 volts, and v3 = -6.0 volts. 

The  computer is programmed  to  determine  average  values , 3 , and x of 

the  samples  for  each  calibration  voltage. A linear  relation is assumed  to  exist 

between  actual  voltage v and sensed  value x, that i s ,  

v = A (x - B). 

Two of the  resulting  three  simultaneous  equations  can  be  solved  for scale 

(A)  and t a re  (B) factors.  This  calibration is used later in  the  data  run  to  assign 

t rue voltage  readings  to  the  data.  It  serves  to  eliminate  inevitable  gain  changes 

and D.C. offsets  present  in  the  recording and reproducing  process  from  magnetic 

tape.  The  computer is next  presented with samples of the  three  digit star num- 

ber .  Once again,  average  values are determined  and are expressed in percent- 

ages of positive  calibration.  This  serves to  identify  the star  number.  The 

computer  has  stored a list of over 100 stars according  to  star  number, 

right  ascension, and declination. Use  of the  following  information  allows  calcu- 

lation of s te l lar  zenith  angle and azimuth: 

(1) Time of data  run. 

(2) Sidereal  time at Greenwich,  England, for zero  hours  Universal  Time on 

the day of observation. 

(3) Stellar  coordinates,  right  ascension  and  declination. 

(4) Longitude  and  latitude of observation  site. 

Data  samples  then  begin  to  enter  the  computer. If 20 seconds of data is to  

be  analyzed,  the  computer  will  be  presented with a series of 20,000 data  points 

for  each of the  three  tracks.  All  statistics  subsequently  calculated  from  the  data 
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points  will  be time averaged  over  the  length of the  data  run (20 seconds). It is 

necessary  to  average  data  over a t ime long  enough to   assure  good statistical 

accuracy.  Estimates  based  on  equivalent bandwidth  and resulting  number of in- 

dependent  samples  suggest at least a 10-second  averaging  time  for SIM data. 

On the  other  hand, if averaging  time is too  long,  atmospheric  or  other  experi- 

mental  conditions  can  change  significantly,  destroying  the  meaning of the  data. 

Twenty  seconds seems  to be a reasonable  compromise. 

Each  data  point is assigned a voltage  level,  v,  according  to  scale  and tare 

factors  determined by calibration. Method of analysis  is  then sp:it into two main 

procedures. In the first procedure,  the  voltage  range  that  includes all the  data is 

divided  into a large number, K, of class  intervals.  The width, Av ,  of the class 

interval,  i,  may  be  chosen  at  will but has as its effective  lower  limit  the  voltage 

resolution of A/D equipment.  The  following are typical  parameter  values: 

and 

voltage  range = 0.0 to  10.0 volts, 

K =  500, 

n v  = 0.02  volts. 

The  computer  tabulates  the  number, n(vi ), of occurrences of the  data  record  in 

each  class  interval and also  the  percentage  occurrences, p(vi ). This  in  effect 

establishes a probability  density  histogram, P(y ), representing  in  digital  form  the 

probability  density  function,  P(v) , by 

where N = total  number of data  samples.  Then, 
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and K 

C P ( v i ) A v  = 1 . 
i= 0 

The  cumulative  density  histogram is related  to P(vi ) by 

j 

C(Vj) = C P ( V i ) A V  . 
i= 1 

This  represents  the  total  probability  for  voltage less than o r  equal  to  the  given 

voltage, vj . Probability  density and cumulative  density are related  theoretically 

by 

and 

The  computed  probability  density  function is used  to  determine  means,  variances, 

and  higher  moments of the  data  record.  Thus, 

Mean = v 
- 

= v i  P(Vi) nv 
i= 1 

N 

j t h  moment about  the mean = T(vi - v) j  p(vi) AV 

where j = 2 is the  variance, u 2 .  The sample  mean  and  sample  moments  thus  com- 

puted are not unique for a given  sequence of N data  points,  since  they are determined 

by  choice of voltage  interval  endpoints and  by number of class  intervals. 
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The  parameters  coefficient of kurtosis, k, and skewness, s,  help  to  charac- 

terize the  probability  density  function.  These are given by 

and 

Coefficient of kurtosis relates to  the width of the  distribution  and  skewness re- 

lates to  its symmetry.  For a Gaussian  distribution, both k and s will  be  zero. 

Random  voltage  statistics  can  best  be  summarized  in  one  parameter,  coeffic- 

ient of variance,  where 

(a2)1’2 
Coefficient of variance = - 

V 

This  parameter  has  the  form of a percentage  modulation.  It is the  ratio of stand- 

ard deviation of the  fluctuating  signal  to its average  value. 

The  second  main  direction of analysis is based on data  time  series,  the  suc- 

cession of data  samples  maintained  in  their  original  positions as a function of 

time.  The  basic  tool  in  this  analysis is the  sample  autocorrelation  function, 

R(T)  T - T  v(t) v(t + 7 ) d t  , 

where 
7 = lag  time, 

T = length of data  sample, 

v(t) = voltage  level at time t.  
and 

The  autocorrelation  function  for  random  data  describes  the  general  dependence 

of the  values of the  data at one t ime on the  values at another  time. An estimate 
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of the  autocorrelation  between  values of v(t)  and  times t and t + T is just  the 

product of the two values  averaged  over  the  length of data  sample.  Here, T is the  lag 

t ime or separation time. For computer  analysis,  the  discrete  representation is 

used.  Thus, 

N- 7 

R ( 7 )  = R ( 8 A t )  = vi' , 
1 

i = O  

where 
4. =lag  number = 0, 1, 2, . . . m y  

m = maximum lag number, 

N = total  number of samples,  

t = interval  between  samples, 
and 

v .' = vi - = voltage  level for the i t h  sample  minus  the  average  voltage  level. 

For  a good estimate of R ( T )  m  should  be  chosen one tenth of N o r  less. Typical 

parameters are 

and 

N = 20,000, 

m = 200, 

A t  = 1 millisecond. 

Although R(7)  is a useful  quantity by itself, it is more  useful when applied to  an 

estimate of spectral  density, G(f) ~ where 

Spectral  density  can  be thought of as voltage  variance  per  unit  bandwidth.  In  order 

to proceed  from  the  time  domain, R( T ) ,  to  the  frequency  domain, G(f) , we must  use 

the  Fourier  transform of R(T) with respect  to 7, so that 
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In  discrete  form  for  computer  analysis,  this  becomes 

where 

and 
f = frequency  (Hz) 

f = 500 Hz = frequency cutoff of data. 

The  equivalent  bandwidth or  frequency  resolution  in  this  analysis is Be , where 

For  the  previously  assumed  parameters, Be= 5 Hz. The  raw  estimate  spectral 

density  requires  smoothing  because  the  variability of the  estimate  does not de- 

crease with increased  sample  size o r  record length.  Smoothing o r  weighting 

nonuniformly  can  be  accomplished by multiplication by the Harming lag window, 

W A t ,  9 

Thus, 
m 

.e= 0 

For  graphical  presentation of spectral  density,  normalization  to  unit  vari- 

ance  may  be  employed.  The  variance of the  signal  in  each  frequency  interval is 

divided by variance  for  the  full  signal.  This  insures  that all spectral  densities 



will  have  the  same area under  the  curve  regardless of the  strength of turbulence 

fluctuations.  This  method  aids  in  plotting  strong  and  weekly  fluctuating signals 

on the  same  graph.  The  unnormalized plot  should  be  used  to  facilitate  compari- 

son of strength of signal  in a given  bandwidth for many different data  runs. 

Although  both  methods of statistical  analysis  apply  in  general  to all data 

from  the SIM, each  data  track  must  be  handled  in a particular way. The  image 

intensity  track  represents  irradiance  fluctuations of starlight. Voltage produced 

by the  monitor is directly  proportional  to  irradiance, I, optical  power  per  unit 

a rea  at the  receiver.  Before  the  connection  can  be  made,  the  effect of optical 

and electronic  background  must be removed  from  voltage  statistics.  The  pri- 

mary  effect of background is the  introduction of an  unwanted D.C. offset  into  the 

data.  Computer  measurement of background  data  taken  at  the  end of each  data 

run  allows  the D. C .  offset  to be subtracted  before  calculations  are  made.  The 

dimensionless  parameter  coefficient of variance,  here  called CIV, coefficient 

of irradiance  variance,  has  been  the  most widely  used  measure of irradiance 

fluctuations.  The  standard  format is a plot of log, [ CIV 1 versus  log,  [secant 

(zenith  angle)] of the  stellar  source.  This plot is characterized by the  diameter 

of the  telescope  aperture  and, of course,  the  turbulence  state of the  atmosphere. 

A s  indicated  previously,  log-amplitude  and,  thus,  log-irradiance  behave 

in a Gaussian  manner.  The  logarithmic  behavior of irradiance is evidenced by a 

low average  value  compared  to high peaks, often  many times  the  average  value but 

of short  duration.  Thus,  image  intensity  could  be  discussed  in  terms of log- 

amplitude  statistics.  Log-amplitude  can  be  written as one-half the  natural log 

of the  ratio of instantaneous  irradiance,  that  is, one-half log-irradiance, so that 
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1 I 
I 

.e = 2 l o g e - T .  

I/f is just  equal  to vi /; since  the  proportionality  constant  cancels.  Thus, 

1 v i  t i  = " log, :. 
V 

Statistics of log  amplitude  can  be  computed  in  the  same  manner as voltage sta- 

tist ics with  the  substitution ti for vi . Log amplitude  variance, m j  , now becomes 

the  central  parameter.  Summary  information is a plot of log  amplitude  variance 

versus zenith  angle.  Spectral  densities of both irradiance and  log  amplitude a re  

particularly  important  for  they  reveal  much about the  atmosphere  through  their 

demonstrated  dependence on zenith  angle and upper  altitude wind velocity. 

The  modulation-index track  results  in a voltage  proportional  to  the  modulus 

of the  optical transfer function for  the  particular  spatia1  frequency  used  in  data 

taking.  Voltage  statistics are appropriate and require only a conversion  factor 

to modulus  statistics.  Laboratory tests generate a plot of modulus  versus modu- 

lation  index  voltage. Modulus is just  the  depth of modulation of the  square wave 

input  to  simulate  the  waveform  from  the  detection of chopped starlight.  One- 

hundred-percent  depth of modulation  corresponds  to a modulus of 1.0. As the 

depth of modulation is varied,  the  analog  divider  and  peak  detector  respond with a 

change  in  voltage. Modulus values  obtained from  this  curve are corrected  for 

the  effect of electronic and  optical  background.  This is done  with average 

voltage  and  average  background  data  obtained  from  the  image  intensity  track. 

The  average  value of defocus  voltage serves as the  zero  reference  for  modula- 

tion  index  voltage.  The  variance of modulus is read  directly  from  the  calibration 

curve.  Data  reduction is incomplete  without  the  time series information  provided 
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by  autocorrelation  function  and  spectral  density.  This  analysis  can  be  performed 

directly on  modulation  index  voltage.  Secant of stellar  zenith  angle,  azimuth, 

and  spatial  frequency  serve  to  characterize  the  data  run. 

The  image  motion  track  may  be  handled  entirely  in  terms of voltage  statistics, 

since  optical  phase,  image  motion,  and output voltage of the  electrical  phase  com- 

parator enjoy a linear  relationship.  Image  motion  in  the  telescope  focal  plane 

is the  result of random  deviations  or tilts in  the  angle of arr ival  of various  parts, 

or   a l l ,  of the  incoming  wavefront.  These  tilts  are  actually  optical  phase  differences 

following  a  Gaussian  distribution.  Stellar  image  motion with respect  to  reference  light 

image  causes a change  in  the  relative  electrical  phase of waveforms  from  the 

two  detectors.  Suitable  laboratory  calibration  yields  a  conversion  factor  in  volts 

per  arc  second  for  each  spatial  frequency. Voltage statistics  are  thus  converted 

to  image  motion  statistics.  Present  in  the  image-motion  voltage output is a linear 

drift  attributable  to  telescope  tracking  error.  This is compensated by a computer 

generated  least  squares fit of a  straight  line  to  the  data. The  conversion  to 

average  image  position is meaningless  in  data  reduction,  since it is not important 

to  know precisely  where  the  image is but how it fluctuates with respect  to  a fixed 

point.  The important  parameter is image-motion  variance, D: . Either  this 

number  or  rms  value, urn , is plotted  versus  secant  zenith  angle of the star. The 

measured  motion is only the  component  perpendicular  to  the  chopper  disk  radius. 

Spectral  densities of image  motion  can  be  scaled  directly  from  voltage  spectral 

densities. 

At the  conclusion of computer  analysis of stellar  data  for a particular  night, 

a data  summary  sheet is prepared.  The following  information is tabulated  for 

each  data run. In  addition,  data  for  different stars is combined  to  yield  plots of 

log, (CIV) versus  log,  [secant  (zenith  angle)] and  phase  variance  versus  secant 
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(zenith  angle). A modulation transfer function is plotted  for  each star observed 

at four or  more  spatial  frequencies.  This  places  the  data  in a form  suitable  for 

interpretation. 
Table 4 

General  Parameters  for  Each  Data Run 

2. Star name and  number 

4. Secant  (zenith  angle) 

5. Log,  [secant  (zenith  angle)] 

7. Time  interval  for  data  run 

8. Spatial  frequency 

9. Aperture  diameter 

Table 5 

Statistical  Summary  for  Each Data Run 
~~ ~. . . -. 

INTENSITY TRACK 

1. CIV = ov/V = coefficient of irradiance  variance 

2. .;e' = log  amplitude  variance 

3. V = signal  mean 

4. log e (CIV 

5. vB = background  mean 

MODULATION INDEX TRACK 

- 

1. Ov/V 

2. v = signal  mean 

3. v,, = defocus  mean 

IMAGE  MOTION  TRACK 

1. v = signal  mean 

2. ~ , 2  = motion  variance 

3. urn = motion rms  

- 

- 

- 

~ ~ 
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Prior  to deployment of the Stellar Image  Monitor  Experiment  in  the  field, 

a ser ies  of laboratory tests and calibration runs was performed.  The first 

system  component  to  be  tested  was  the  electronic  preprocessing  system. 

Figures 12  and 13 show measured  frequency  and  phase  response of the  bandpass 

and  lowpass filter sections. Bandwidths are 3100 f 200 Hz and 200 Hz, respectively. 

Frequency  response  was  measured by using a sine  wave  signal  generator in  place 

of inputs  from  photomultiplier  and photodiode. Phase  response  was  measured on 

an  oscilloscope. Filter input  and output were  applied  to  the  vertical  deflection 

and  horizontal  sweep  respectively.  The  resulting  lissajous  pattern  displayed 

on a phase  reticle  gave  readings of phase  difference.  Gain  and  linearity  tests 

of the  amplitudes  were  also  performed.  This  served  to  calibrate  the  image 

intensity  track. 

t 

W 
v, 
z 
8 
v, 
W 
LL 

I- 
4 
W 
LT 

(SINE  WAVE) 

D. C. = 3.03 VOLTS 

A.C. = 2.14 VOLTS RMS 
AT 10 Hz 

W 
L 

" "  
" 

I v d 
200 400 600 800 1000 1200 1400 1600 

FREQUENCY (Hz) 

Figure 12. Low-pass  filter  frequency  reponse 
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Figure 13. Bondpass  filter  frequency  reponse 

Modulation  index  calibration  required a measure of combined  response of 

analog  divider  and  peak  detector.  Sine  waves at the chopping  frequency  were 

input  in  place of signals  from  the  photomultiplier. Modulation  index  (peak A.C. 

divided by D.C.) of this input  was  measured at the  input  terminals of the  analog 

divider.  Measured  values of peak  detector output  voltage  for  the  given  modulation 

index o r  percent  modulation are shown in Figure 14. This  curve  applies  for D. C .  

voltage  in  the  range -1.0 to -3 .0 volts.  It  should  be  noted  that  linearity is not  an 

important  consideration  in  this output since  the  expected  fluctuations  will be 

small  compared  to  their  average  value.  Percent  modulation  determined  from 

this  curve  must  be  multiplied by 

D . C .  + RCND 
D .   C .  
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Figure 14. Laboratory  calibration of modulation  index 

to  correct  for filter gains and  any D.C. offset  voltage.  The  symbol BGND, o r  

background,  represents  this  offset. D.C. + BGND information is available  from 

the  image  intensity  track.  Filter  gains  were  measured  during  calibration and 

their  ratio is 

Calibration and testing of the image motion  electronics  employed  an  artificial 

star source,  Figure 15. A point source at the  focus of an f/10, 20-inch  diam- 

eter collimating  mirror  represented  the  small  angular  size and parallel  light of 

a star. The  point source was either  white  light o r  0.6328  micron  red  light  from 

a Spectra  Physics 131 helium-neon laser. Light from an  incandescent  lamp 

filament  focused on a variable  size pinhole served as the  white  light  point  source. 

In  both cases a further  reduction  in  spot  size  was  achieved  through  microscope 

objectives. 85 
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Figure 15. Laboratory optical t es t  setup 

Each  thousandth of an  inch  in  the  focal  plane of the 20-inch collimator 

corresponds  to  one  arc  second.  Source  sizes  were kept smaller than the  theo- 

retical  angular  resolution of 6-inch diameter  optics. 

Collimated  light  produced by this test setup  was allowed to  enter  the 6 -  

inch  diameter  optics of the  Stellar  Image  Monitor after traversing about 40 feet 

of laboratory air space.  The point sources  were mounted  on an optical  bench 

equipped  with a translation  slide. Movement of the point source in increments 

of 0.001 inch  in  the  focal  plane  could  be  measured  there  and  produced  the  cor- 

responding  number of arc seconds  deviation.  The D.C. voltage  output .of the SIM 
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phase  comparator  was  recorded as a function of this arc  second  displacement. 

The output of the  phase  comparator was not a pure D.C. voltage  but  contained 

frequency  components  due  to  room  vibration, air path  turbulence,  and  chopper 

pattern  centering  error.  The  resultant  plot,  Figure 16, yields  the  desired  cali- 

bration  factor  in  volts  per  arc  second.  This  factor  depends  linearly  on  spatial 

frequency.  For  the  spatial  frequency  used  in  the  calibration  the  rms  error was 

approximately 0 . 1  arc  second. It should be noted  that  the  calibration  curve is 

cyclic with a linear  response  in  the  mid-range of voltages.  Thus  in  actual  data- 

recording  the  average  value of phase  comparator output should  be  maintained at 

approximately 3.5 volts. A check on spatial frequency  was  made by  noting the 

number of cycles of the  response  curve  per  arc  second.  The  results  agreed with 

microscopic  objective  power  being  used  and  calculation of chopper  wheel  sector 

width. 

CALIBRATION  FACTOR: 
.75 VOLTS/ARC  SECOND 

IMAGE  DISPLACEMENT  (ARC  SECONDS) 

Figure 16. Laboratory  calibration of image  motion 
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Using the artificial star system  described  above  optical  transfer  functions 

for  the SIM in  white  light  and  red  light  were  generated  (Figure 17). This  was 

done  by  varying  microscope  objective  power in the SIM. Measured  OTF  shows 

a degradation of performance  in  white  light  while  monochromatic  red  light  per- 

formance is close  to  the  diffraction  limit.  Chromatic  aberration  causing  this 

effect  must  be  present  in  the  SIMoptics  since  the  collimating  system is reflective. 
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F igure  17. Optical  transfer  function  modulus 

Error Analysis 

In  examination of possible  error  sources  to  account  for  inaccuracies  in  the 

analyzed  data and spread  in  data point values,  three  major  factors  have been  de- 

termined.  Listed  in  the  order of importance of their  effect on the  data, they are- 

(1) Nonstationarity of the  atmospheric  processes. 

(2) Statistical  sample  size. 

(3) Electronic  signal-to-noise  ratios. 

88 



To even  the  most  casual  observer of optical  phenomena  resulting  from 

atmospheric  turbulence,  the  most  striking fact is their  nonstationarity. Not 

only do these  phenomena  vary  from  night  to day  and season  to  season but over 

periods as short as several  minutes,  large  departures  from  stationarity  may  be 

observed. In order  to  characterize  the  phenomena,  the  scientist  must  take 

samples of finite length  and  perform  statistical  analyses. He is limited on the 

lower  end of the  time scale by his  desire  to get enoughdata  to  form a reasonable 

statistical  sample and on the  upper  end by nonstationarity  effects  and  the  fact 

that  his  equipment  can  only  handle so much  data.  Estimates of the  magnitude 

of nonstationarity are in  dispute but it is  generally  conceded  that  the  problem is 

much  worse  in  the  ground  boundary  layer of the  atmosphere.  Here  local  terrain 

effects  become  dominant.  Lawrence,  Ochs,  and  Clifford4'  have  reported  fluctua- 

tions  in  the  ground  strength of turbulence,  Ci, by factors of 10 to 100 

over  periods of a few  minutes.  Image  size and image  motion  data are mostly  de- 

termined  in  the  lower  layers and  thus  may  be  expected  to  exhibit  the  greatest 

nonstationarity . Irradiance,  determined by higher  altitude  effects  where  the 

turbulence  field is more  uniform,  should  show a corresponding  increase  in sta- 

tionarity. Such assumptions are borne out  by experimental  evidence.  Chart  re- 

cordings of image  motion and image  intensity  over  long  periods of time show 

little apparent  change  in  degree of intensity  fluctuations  while  image  motion is 

observed  to  periodically  increase and then  decrease.  Measurements of finite 

record length of these  quantities are nevertheless  true  measurements.  Unfor- 

tunately,  they  may  bear no relation  to  measurements of the  same  quantities  taken 

a few minutes  later. Since  assignment of e r ro r   ba r s   t o  nonstationary  data  points 

would be subjective at  best,  let  it   suffice to say  that  the  data  reported  here should 

be  considered  typical  rather  than  average and more  representative  than  exact. 

Noticeable  spread  in  plots of data  values,  especially  for  image  motion  may  be due 

largely  to  this  nonstationarity . 
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Standard  statistical  techniques  provide a means  to estimate the  effect of 

finite data  sample  length.  Data  points  obtained  from  the  Stellar  Image  Monitor 

apparatus are random  variables. A succession of these  values  represent a sample 

function of the  stochastic  processes of image  intensity,  motion,  and  size.  The 

computed  statistics are sample  means,  variances, and higher  moments.  For 

a number, N, of independent  observations of a normally  distributed  random 

variable,  x, it is known that  the  sample  variance  obeys a chi-square  distribution 

with  n  degrees of freedom, i .  e .  , 

where 

and 

n = N - 1 ,  

S 2 = sample  variance , 

a,2 = actual  variance, 

X :  = chi-square  random  variable. 

Stellar  image  position at a particular  time is an  example of the  normally distri- 

buted  random  variable.  For  weak  irradiance  fluctuations, as observed  in  the SIM 

data,  image  intensity  can  also be approximated by a normal  distribution.  Statis- 

tics of chi-square  determine  the 1 - a confidence  interval  for  sample  variance, 

S 2 ,  such  that 

That is, the  actual  variance D ;  is known to fall within  the  above  interval  with a 

confidence of 100 (1 - a )  percent.  The key parameter that determines  the above 

interval is N,  the  number of independent  samples.  In  the SIM data  reduction, a 

sample is taken  every  millisecond. Only some of these are independent,  however. 

N is given by the expression 
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N = 2Beq T , 

where 

B ~ ~ =  equivalent  white  noise bandwidth 
and 

T = record  length. 

In  turn,lBeq \ can be estimated  from  the  relation 

where 

Rx( r) = autocorrelation  for  random  variable. 

Typical  values of Rx( 7)  for  image  intensity and  motion  lead to  estimates  for Beg 

and  in  turn N for  a given  sample  record  length,  T.  The  value of chi-square  for a 

particular N and a is obtained from  standard  tables.  Results are given below 

for  a 90-percent  confidence  interval  for  each signal and a sample  record  length 

of 20 seconds. 

Table G 

Statistical  Error  Analysis 

' e  q 
N a X n ; a / 2  X " ;  1 - a / 2  

2 2 

Image  Intensity 

26 55 .10 40 1 Hz Image Motion 

1896 21 04 .10 2000 50 Hz 

90-percent  confidence  intervals 

[ . 95  s2 La: 5 1 . 0 5  s21 

[ .71 s2 I ai  5 1.5 s21 

It is apparent  that  from  statistical  considerations  alone, a large range in  image 

motion  variance  should  be  expected. On the  other  hand,  the  true  irradiance  vari- 

ance is located  in a narrow  range (+ 5  percent) of the  measured  value. 
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In  modulation  index statistics, the  important  parameter is mean  value. In a 

similar  manner a 90-percent  confidence  interval  can be constructed  around  the  true 

value of modulation  index  mean.  In  this  case,  the  statistic of interest is the  stu- 

dent t distribution  in  terms of random  variable tn ,  by 

where 
- 
X = sample  mean, 

L x  = actual  mean, 

n = degrees of freedom = N - 1, 

N = no. of independent samples,  

s = square  root of sample  variance . 
and 

The  interval  becomes 

The number of independent samples  for modulation  index i s  approximately  twice 

that  for  image  motion o r  about 100 for a 20-second record. Again consulting 

statistical  tables,  it  is  possible  to  construct  the  90-percent  confidence  intervals 

in terms of x and S,  so that 

[x - . 2  s 2 pLx < x. t . 2  SI . 

In essentially  all SIM data, S was found to be less  than +10 percent of X .  That is, 

Thus  from statistical considerations,  modulation  index  mean  should  be  attainable 

with & 2  percent  accuracy. 
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Tests of the  electronic  detection,  processing, and recording  subsystems 

identified  the  photomultiplier  tube  and  the  tape  recorder-reproduce  unit as pro- 

viding the  limiting  signal-to-noise  ratios.  Noise  sources  in  the  photomultiplier 

were dark  current and shot  noise  associated with the  average stellar photocurrent. 

Dark  current  specifications  for  the EMI 9558B tube  used  were  equivalent to 1.2 x 

watts input.  The average stellar signal (first magnitude star) for  the  full 

0.152-meter  aperture  and  optical bandwidth  of 0 . 1  micron  was  approximately 5 x 10"l 

watts  indicating  no  trouble with dark  current. A calculation  including  shot  noise 

indicated  that  for  the same parameters  assumed  above,  the  average  photocurrent 

signal-to-noise  ratio was  44 db.  Thus for this case  the  analog  tape  system  speci- 

fication of 43 db was  the  limiting  signal-to-noise  ratio. If limiting  signal-to-noise 

was  taken as 40 db,  instead,  the  associated  noise  error  bars would be one  percent 

For  smaller  apertures  the  shot  noise  contribution  was  significant,  however. 

Reduction  in  aperture  to  0.0245  meters  results in an  average  signal-to-noise  ratio 

of 28 db. This is the  limiting  ratio  for  smaller  aperture  data. 

Presentation and Discussion of Results 

Stellar  data  reported  here  was  obtained on various  clear  evenings  from 

fall 1968 to  spring 1969. The  observation  point  was  the  Goddard  Optical  Research 

Facility  located  approximately  4.5  miles  from  Goddard Space Flight  Center  in an 

open  field.  The Stellar Image  Monitor  apparatus  was  placed on a 12-inch 

high concrete  slab about 20 feet from a 20- by 20-foot trailer.  This 

building  supplied  the  necessary  power and  support  capability.  Time  and  reference 

signals  were  available  from a timing  system  located  in an adjacent  building. 

The  telescope Bnd tracking  mount  were  not  enclosed  by a dome or  other  structure.  

Standard  alignment  procedures  were  followed  to  assure  accurate stellar tracking. 

Listed below are the  nights on which data  was  taken  and  analyzed. 
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Table  7 

Nights of Stellar Observations 
I 

Night 

(universal  time) 

269 

292 

297 

3 01 

324 

03 6 

037 

04 5 

053 

063 

0 64 

065 

077 

087 

Date 

(local  time) 

24 Sep 68 

7  Oct 68 

12  Oct  68 

16 Oct  68 

18 Nov 68 

4 Feb  69 

5 Feb 69 

13  Feb 69 

21  Feb 69 

3 Mar 69 

4 Mar 69 

5 Mar 69 

17 Mar 69 

27 Mar 69 

Only representative  data and summary  information will be  presented and 

discussed  here  since it would be  impractical  to  supply  everything  available. A s  

mentioned  previously, a concentration  will be placed on that  data  most  useful  in 

examining  the  theory. 

A chart  record of a typical  data  run is shown in  Figure  18.  Experimental 

parameters  that  characterize  the  data  run are listed  in  Table 8. Timing  marks 

at one second  intervals are located  along  the  top.  Appropriate  calibrations are 

indicated  for  the  vertical  scale on each  recording.  The  modulation  index  track 
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Figure 18. Chart  recordings of data  run 

has  indications of percent  modulation and the  image  motion  track is calibrated  in  arc 

seconds.  The  corresponding  computer  statistical  record is summarized  in  Table 8. 

In  addition to  the  statistics  listed,  information on the  probability  density,  cumulative 

density,  autocorrelation, and spectral  densityfunctions is available  for  each  data  run. 

Probability  density  functions  for  irradiance and image  motion  statistics of 

data  run 517 are plotted in  Figures 1 9  and 20. Notice  the  Gaussian  shaped  curve  for 

image  motion  and  the  long  trail  on  the  irradiance  curve,  indicating a log-normal 

behavior.  An  accurate test for  normal  behavior  involves  plotting  the  cumulative 

density  distributions on Gaussian  probability  paper.  This is done  in Figures 21 and 

22 where  the  ordinate is either  log-irradiance  in  relative  units or image  motion 

in arc seconds.  The  abscissa is constructed so that a normal  random  variable 

would plot as a straight line.  Both  quantities  exhibit good fits to normal  behavior 

except  for  edge  effects  where  system  noise  and  dynamic  range  constraints  become 

important.  The  slope of these  curves  may be used  to  calculate  log-amplitude 

variance and image  motion  variance. 
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Table 8 

Statistics for Data Run 118 

GENERAL  PARAMETERS: 

1. DATA  RUN 118 

2. STAR: ALDEBARAN NO. 168 

3. ZENITH ANGLE (ZA) = 29.7' 

4.  SEC  (ZA) = 1.15 

5. LOG, [SEC  (ZA)] = .141 

6. AZIMUTH = 112O 

7. 20 SECOND  DATA RECORD: 301-08-46-36- 56 

8. SPATIAL  FREQUENCY = 0.047  CYCLES ARC SECOND 

9. APERTURE DIAMETER = 6 INCHES 

STATISTICAL SUMMARY: 

INTENSITY 

1. CIV=  0.26 

2. u 2  - 0.018 

3. V= 2.84  VOLTS 

4 -  

4. LOG, (CIV) = -1.34 

5. V = 0.40 VOLTS 
€4 

MODULATION INDEX TRACK 

1. u v f i  = 0 . 0 5  

2. V = 3.9 VOLTS 

3. VD = 0.47 VOLTS 

IMAGE  MOTION TRACK 

1. v = 4.2 VOLTS 

2. c; = 0.18 (ARC SECONDS)~ 

3. o;, = 0'. 43 ARC SECONDS 
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Figure 20. image  motion  probability  density  function 
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Figure 22. Image  motion  cumulative  density  function 
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A summary of irradiance statistics for all observations  on  nights 37 and  65 

is presented  in  Figure 23. A11 data was  taken  with  the  full  0.152-meter  aperture 

and is plotted  in  the  form log, (CIV) versus log, [secant  (zenith  angle)].  The 

straight  line  represents  the  linear least squares fit to  all data  points  with  zenith 

angles less than 60 degrees.  The  calculated  slopes  agree  well with the  experi- 

mental  value of sec 1. * (ZA) reported by Protheroe.  For  larger  zenith  angles 

the  expected  saturation and data  scatter  effects are evident.  Vertical  axis  inter- 

cepts  yield  the  values of CIV for zenith  viewing, 20 percent  and 14 percent 

respectively on the two nights.  Protheroe  reported  average  values of 14 per- 

cent  and 16  percent for summer and  winter viewing  with the  same  size  aperture. 

In Figure 24 zenith-angle  dependence of log-amplitude  variance, m i ,  is plotted 

as well for night 6 5 .  Zenith  angle  dependence reflects the  proportionality of 

m 2  to CIV2. A typical e r ro r   ba r   i s  shown for one  point  in each  graph.  The 

remaining  data  scatter is likely due to  nonstationarity  since  observations  en- 

4 

compassed a period of three o r  four  hours on each  night. 

CONFIDENCE INTERVAL 
0 

T 37 

0 0 

0 

LEAST SQUARES FIT 
CIV= o 20 SEC I 3 1 ~ ~ )  
CIV: 014 SEC1  I6(ZA) 

I NIGHT 65 

I 20" 30" 40' , 50' 60" 70" 

0 0.2 0 4  0 6  0.8 1.0 1.2 14 1.6 18 
LOG, [SECANT  (ZENITH ANGLE)] 

I I I I I I 

80" 
-3.0 ' I ' 

Figure 23. Irradiance  statistics 
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Figure 24. Log-ampl i tude  s ta t is t ics  

Aperture  dependence of irradiance  statistics is reflected  in  the  three series 

of  observations in Figure 25.  A ser ies  of five data  runs with aperture  diameters 

from 0.0508 meters  to 0.152 meters  was  taken on each of the  three  successive 

nights  in  March.  The  solid  line  through  each  data set represents  the  best expo- 

nential  least  squares f i t  of the  form 

CIV' = A  exp (- B diameter). 

The parameters of the  fit a r e  A ,  B,  and R ,  a correlation  coefficient  representing 

the  accuracy of data  fit  to  the  exponential.  The  parameter B has  units of meters-' 

and  can be related  to  the  irradiance  correlation  distance, &, by the  technique 

described  in  Chapter 111. The  calculated  values  must  be  corrected  for  zenith 

angle of observation  in  order  to  arrive at the  desired  quantity VhH,  , 

=JAH, sec 6 ,  
where 

and 
B = zenith  angle 

H, = altitude  most  significant  in  determining  irradiance  fluctuations. 
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Figure 25. Irradiance  aperture  dependence 

Results  are  tabulated below for  the  three  series of runs. Height at  which maximum 

wind velocity  occurred is given, as i s  the  height for  the  temperature  inversion  cor- 

responding  to  the  tropopause.  The  meteorological  parameters were obtained from  bal- 

loon  rawinsonde  probes  launched  from  near  Dulles  International  Airport  within a few 

hours of each  series of runs. Although the  launching  site i s  about 80 kilometers 

from the  point of stellar  observations, the  upper  altitude  parameters  can be con- 

sidered  fairly  typical  for  the  entire Washington, D. C .  , vicinity. 

There is no clear correlation  between  measured  height, H,, and heights at 

which  meterological  evidence  for  turbulence exists. The  statement about correla- 

tion  distance  was  that it should  be of the  order of m,, not necessarily equa.1 to i t ,  

however. All  heights are within a factor of two of each  other,  indicating  that effects 

located at these  higher  altitudes are contributing  most  significantly  to  irradiance 

statistics. 
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Night 

63 

64 

65 

Table  9 

Irradiance  Correlation  Distance and Meterological  Parameters 

B 

(meters" ) 

9.91 

11.9 

8.54 

Exponential Fit 

v 5  

(meters) 

0.134 

0.112 

0.156 

J X H ,  

(meters) 

0.096 

0.083 

0.106 

(kilometers) 

18.4 

13.8 

22.5 

T Meterological  Parameters 

height of 

tropopause 

(from  temperature) 

data 

(kilometers) 

10.1 

10.0 

11.6 

height of 

max. wind 

velocity 

(kilometers) 

9.2 

14.5 

10.8 

max. 

wind 

velocity 

(meters/second) 

40 

18  

66 



Frequency  domain  behavior of irradiance is reflected  in  Figures 26 and 27 

and also in the figures of Chapter V. The latter are of particular interest since 

they  show  spectrum  shape for near-zenith  viewing on several  different nights. 

They will be  discussed  in  connection with a model for strength of turbulence  in 

the latter chapter. It has  been  shown43  that  frequency  spectrum of log-amplitude 

is nearly  identical  to  that for irradiance  under  the  conditions of small  m 2  For 

the  starlight  observations  reported  here  this is certainly  the case. Essentially 

all spectral  densities of irradiance  have  the same type of shape.  They  tend  to 

increase  slowly  from  zero  frequency  to a broad  peak at about 10  Hz to  20 Hz. 

Beyond that  they obey a near exponential  decrease  to  the  system  noise  level 

(40 db) at a few  hundred Hz. It is reasonable  to  assume  that  turbulence  elements 

of size,  a, which are most  responsible  for  the  irradiance  fluctuations  also 

are responsible  for  the peak.  Without prior knowledge of the  proportionality 

constant  relating  frequency  to a, the  height z cannot  be  determined  here. A s  

zenith angle increases,  the peak moves  toward  the  origin  and bandwidth of the 

entire  spectrum is reduced,  roughly in proportion  to 1 / m .  As aperture 

diameter  decreases  the  peak  moves  to  higher  frequencies and  bandwidth increases. 

Samples of zenith  angle  and  aperture  dependence a r e  shown in  Figures 26 and 27 

respectively.  These  spectral  densities are normalized  to  unit  variance for ease 

of comparison. 

4 .  

An exponential of the  form 

CIV2 = A exp (- B f req.) 

can  be  fitted  to  the  data beyond the low frequency peak and B-' used as a measure 

of bandwidth. When this is done the  ratio of bandwidths for  the  different  zenith 

angles of Figure 26 is found to be 1.8. This  compares with 2.0 for  the  ratio of 

103 



t 
" - 1  

.07\ 

ZENITH  APERTURE I 
NIGHT STAR ANGLE INCHES CIV u: 
292 193 75.7" 6 .37  ,034 
292 444 6.2" 6 .09 .0018 

1.01 1 .oo 
2 : l  

R, 1 \-STAR: CAPELLA 

a E .04 

75.7" ZENITH ANGLE 

2 1 1-S.D. =.086 (-.083f) R = -.990 

3 .03 
BW = 12 HZ. 

N 
1 

0 6.2" ZENITH ANGLE 
Z 

,011 / \/ R = -.997 
S.D. =.064 exp (-.049f) 

OO 
I 1 

20 40 60 80 100 1: 

T I 0  

+ 
0 

FREQUENCY (Hz) 

Figure 26. Example of irradiance  spectral  density  zenith  angle  dependence 
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Figure 27. Example of irradiance  spectral  density  aperture  dependence 
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square  root  secant  zenith angle for  the two stars. Aperture  reduction  in  band- 

width is about  2:l  in  passing  from  the  0.0245-meter  aperture  diameter  to  the  full 

0.152 meter. No strict power law dependence is expected  and  this  matter will be 

taken  up  again  in the next  chapter.  Relationship of bandwidth, B-' , and upper 

altitude wind velocity is dramatically  demonstrated  in  the following table.  Listed 

here  are exponential fit parameter, B-l , and  R, correlation  coefficient,  along  with 

the  maximum wind velocity for various  nights.  All  spectral  densities were com- 

puted for near-zenith  observations with the  0.152-meter  aperture.  This  prevented 

confusion  between  zenith  angle and aperture  dependence. 

Table 10  

Irradiance Bandwidth and  Upper  Altitude Wind Velocity 

Night 

292 

297 

301 

03 6 

037 

063 

064 

06 5 

07 7 

087 

Data 

Run 

61 

87 

121 

424 

449 

524 

547 

5 84 

623 

633 

Zenith 

Angle 

6 

7 

14 

10 

7 

18 

11 

18 

14 

25 

CIV 

.085 

,112 

.244 

.252 

.220 

.199 

.139 

.135 

.242 

.180 

T 
~~ 

Exponential Fit Parameters 

A 

.0135 

.02 04 

.0338 

.0102 

.03  54 

.02  05 

.0317 

.0316 

.0921 

.02  57 

B 

-.0229 

-.0187 

-.0273 

-.0186 

-.0263 

-.0171 

-.0323 

-.0149 

-.0118 

-.0215 

R 

-.930 

-.982 

-.978 

-.931 

-.986 

-.985 

-.991 

-.957 

-.962 

-.978 

1/-B 

43.7 

53.5 

36.6 

53.8 

38.0 

58.5 

30.96 

67.11 

84.5 

46.5 

T VN (max) 

(meters/second) 

21 

38 

32 

54 

51 

40 

18 

66 

97 

38 

While irradiance  statistics were found to  be fairly similar  from  night to 

night,  image  motion  and  image  size statistics changed  markedly  within  even a 

few hours  on a particular night. This was to  be  expected  due  to  the  higher  degree 
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of nonstationarity of the  lower  atmosphere,  where  these  quantities are primarily 

determined.  Increase  in  statistical  errors  for  the  measurement of motion and 

size  also played a large role. Two sets of image  motion  statistics  for night 37 

are shown inFigure  28.  The  first set was  taken  just  after  dusk and the  second 

se t  an hour later. Note the  factor-of-two  reduction  in ~7: for all zenith  angles 

during  the later period.  Lines  drawn  through  the  data  represent  the  best  fitting 

line of the  form 

c2  = M s e c a n t   ( z e n i t h   a n g l e ) .  rn 

Value of the  slope m was 1.4 and 0 .65  (a rc  seconds)' for  the f i r s t  and second  sets 

of observations  respectively. M is the  value of 5: for  zenith viewing. For  

essentially all observations on all nights  the  range of M was 0 .4  to 1 .6  (arc seconds)'. 

Statistical  error  bars  drawn  for a typical  point  in  Figure 28 indicate  that  nearly 

all data  scatter  can  be  accounted  for  on this basis  alone.  Before  plotting,  each 

data  value of 5: was corrected  for a noise  component  most  probably due to 

chopper  pattern  centering  error.  Fortunately  the  noise was  periodic (8 Hz) and 

its magnitude could be  accurately  measured  from  the  spectral  density of the 

voltage  output  proportional  to  image  motion. Magnitude of the  noise  was  generally 

such  that it contributed  5  to 20 percent of image  motion  variance. All values of 

cr; and spectral  densities  plotted  here  have  been  corrected  individually  for  the 

noise  component. 

Data  on  aperture  dependence of image  motion  was  taken  simultaneously with 

the  three  sets of data on irradiance  aperture  dependence  discussed  previously. 

Each  data set was  taken  over a 15-minute  period  and  consisted of five  different 

aperture  diameters evenly  spaced from 0 .051  to  0.152  meters. A s  shown in Figure 

29 a least squares  power  curve of the  form 
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u i  = A ( d i a m e t e r ) B  

was fit to  each  data set. The  calculated  power  dependence, By compares  roughly 

in  each set with the  theoretical  value of -1/3. Correlation  coefficient, R, is 

low,  especially  for  night 63 data,  indicating  data  scatter. Once  again,  most 

scatter  can  be  explained by statist ical   error  bars  based on the  length of each  sample 

and  the  number of independent samples. 

The  frequency  spectrum of image motion for  data  taken with a 0.152-meter 

diameter  aperture is characterized by a rapid  exponential  decrease  from  zero 

frequency.  Essentially all motion is confined to  frequencies  below 20 Hz. A 

typical  example is shown in  Figure 30 and  several  more  are  included in the 

Figures of Chapter V .  A decrease  in  aperture  or zenith  angle  tends  to  flatten 

the  spectrum and  extend it  to  somewhat  higher  frequencies.  This  data and its 

relation  to  strength of turbulence  analysis will be  examined  in  greater  detail  in 

the  next  chapter. 

. ~ _ _ _ ~ ~ -  

STAR: 257 
N' 74" ZENITH  ANGLE 

0.1 

0 
I""""" c z  "" "4- "- - 

5 10 15 
FREQUENCY (Hz) 

Figure 30. Example of image  motion  spectral density 
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Image size  information is derived  from  the  measured  modulus  (MTF) of an 

optical  transfer function.  Plotted in Figure 31 are measured  MTF values for two 

sequences of stellar observations on night 65. Each  plotted  value is determined 

by the  calibration of modulation-index  voltage.  Observations  were  taken  on  each 

star at five  spatial  frequencies  during a total  time  period of 15 minutes. 

A smooth  curve  was  then  fitted  through  the  data  points and the modulus = 1.0 point 

at zero  spatial  frequency. The  resultant  MTF  does  not  yield  information  on  image 

fine  structure but  provides  an  estimate of the  average  short-term  profile.  The 

profile  plotted  in  Figure 32 is the  computer-calculated  Fourier  transform of 

the  observed  MTF  for star 193 on night 65,  corrected  for  optical  system  MTF 

by division.  The  calculated  profile  for star 257 on  the  same night was  not plotted 

since it fit almost  exactly  the  star-193  result.  Observed  modulus  values  for  the 

two stars show a distinct  difference (10 to 20 percent) for intermediate  spatial 

frequencies,  however.  This  indicates  that a 10  percent  error  in  modulus  value would 

not  be  reflected  in a correspondingly  large  error in image  size.  The  Airy  dif- 

fraction  pattern  for an f/8,  0.152-meter  diameter,  circular  objective in 0.5-micron 

light is plotted  in  Figure 32 for  comparison. Width of both  profiles is measured 

at the l /e  points.  The  Airy  pattern was generated  from  the  diffraction  limited 

MTF of Figure 17 by the  same  computer  routine  used on stellar data.  This  serves 

to test the  computational  approximations  used. Note the  expected  ring  structure 

on  the  Airy  pattern. Ring structure and negative  intensities  on  the stellar profile 

are caused by truncation of the  Fourier  Transform at 0 .6  cycles  per arc second. 

This is where  data on modulus  ended.  This  truncation  does  not  sensibly effect 

image width,  however. 
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An estimate of long-term  prdfile is obtained as discussed  in  the  previous 

chapter. For the long term,  the key parameter  is  image  motion  variance, . 
Two profiles  corresponding  to  the  data sets of star 193 and s ta r  257 from night 65 

are plotted  in  Figure 33. The  large  difference  in  profile width reflects  the  differ- 

ence  in 0; values  for  the two stars. Note the  disappearance of ring-like  struc- 

ture.  This  disappearance  can  be  attributed  to  the  smoothing  action of the  transfer 

function  computed from  image  motion  variance.  Variance of image  profile,ui , 

can  here  be  safely  used as a measure of width since  there  are no false contribu- 

tions  from  ring-like  structure.  Departure of ratio of the two u : ' s  from 

the  ratio of secant  (zenith  angle) is expected  since u i  ratio  shows  this  departure. 

If each  profile  were  strictly  Gaussian,  its width at  the  l/e  points would be 
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Figure 33. Long-term  image  profiles 
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Table 11 

Stellar Image Sizes 

Night 
Star 

Number 

257 

193 

257 

257 

193 

257 

193 

2 57 

257 

193 

257 

193 

257 

- 
Zenith 

Angle 

(degrees) 

56 

20 

57 

56 

18 

58 

20 

56 

56 

26 

56 

26 

59 

sec (ZA) 

1.79 

1.06 

1.84 

1.79 

1.05 

1.89 

1.06 

1.79 

1.79 

1.11 

1.79 

1.11 

1.94 

Short- 

Term 

Width 

1.6 

1.5 

1.5 

1.4 

1.4 

1.5 

1.5 

1.6 

2.8 

1.4 

2.8 

1.4 

2.8 

Image 

Motion 

u3 

1.0 

1.2 

0.85 

1.4 
0.41 

1.5 

0.30 

0.46 

2.1 

0.81 

0.77 

0.43 

0.74 

T Long Term 

u2 

2.3 

2.2 

2.3 

2.9 

1.4 

3.2 

0.69 

1.3 

3.6 

2.0 

2.0 

1.3 

3.6 

S 0 S 

1.5 

1.5 
1.5 

1.7 

1.2 

1.8 

0.83 

3.1 

1.9 

1.4 

1.4 

1.2 
1.9 

Width 

3.6 

3.5 

3.0 

3.7 

2.1 

3.8 

2.2 
3.1 

4.7 

3.0 

3.4 

2.0 

3.5 

*Al l  var iances  measured  in   (arc   seconds) ' .  R m s  and  width  measured  in   arc   seconds.  

This  behavior is also  roughly  confirmed. A summary of all  image-size  results 

is given  in  Table 11. These  results reflect the wide variety of conditions  present 

on  the  various  observing  nights. Note again  the  large  dependence of the  long- 

term  image  size on strength of image  motion,  since  the  method of obtaining 

0; involves  essentially  addition of a: and the  short  term 0:. 
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CHAPTER V 

DETERMINATION OF TURBULENT  PROFILE 

Best Present Estimates of Profile 

The  common  factor  for  all of the  theoretical  analysis  reported  in  Chapter I11 

is an  integral  expression containing  C;(h),  the refractive index structure  constant, 

as a function of altitude.  Lack of both experimental and theoretical knowledge 

of this  profile is the  single  greatest  obstacle  to  understanding  vertical  propagation. 

If the  profile  were known, optical  propagation  theory  could  be  tested  in any number 

of interesting  experiments. Yet what data  there is suggests  that no one ser ies  of 

measurements  to  date  has been  sufficient  to  accurately  describe  the  profile. For,  

as soon as the  measurements  were  taken, the atmosphere  changed.  This is the 

old  problem of nonstationarity of the  turbulent  process.  Lawrence,  Ochs,  and 

Clifford42  in a ser ies  of nighttime  measurements with  an airborne  temperature 

sensor noted several   orders of magnitude  fluctuation  in Ci(h)  for  essentially  the 

same  altitude. All these  measurements were taken  within  four  kilometers of ground 

level and probably  reflect  the  presence of time-varying  local  disturbances.  Turbu- 

lence at higher  levels  should  be  relatively  more  stationary. Of course,  the  average 

behavior of atmospheric  turbulence could be  described by a careful  series of 

thermal and optical  measurements as a function of altitude. A program  to do this 

would be  difficult and costly and would not always  generate  results when needed. 

Alternately, if the  theoretical  dependence on C:(h) is accepted as a working  hypo- 

thesis,  much  can  be  learned  from  ground-based  observations. A useful  concept  in 

conjunction  with  these  observations is a turbulent  profile  model, i.e. a functional 
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dependence  for (2: (h). Model parameters  can  then  be  adjusted  for  correct  predic- 

tion of ground-based stellar  data.  In  particular,  simultaneous  Stellar  Image Monitor 

observations of both irradiance and phase  statistics  should  permit a more  accurate 

determination of model parameters  than  previous  data.  Neither  direct  measure- 

ment  nor  ground-based  observations  solve  the  real  problem of nonstationarity, 

but the  technique of modeling  should  make it  possible  to  describe  average  or  at 

least  typical  behavior of the  turbulent  profile. 

Any proposed  model  should  reflect  probable  meteorological  factors  at  the 

origin of turbulence. A s  noted  previously,  essentially  all  refractive-index  varia- 

t ions  are accounted  for by small-scale  temperature  fluctuations.  These  in  turn 

can  be  related  to  the  pertinent  larger  scale  meteorological  parameters. The  intent 

is not to  construct an actual  profile  from  meteorological  parameters, but merely 

to show their  influence.  Eduation (13) of Chapter I1 related  Ci(h)  to C$(h). This 

can be approximated  for  visible  wavelengths by 

In turn,  C: (h)  can be expressed  from  turbulence  theoryIg9 3 2  in  terms of gross  

meteorological  parameters  for a particular  altitude by 

C; (h) = A 2  
E 2 ‘3 ?2 

P 2  
> 

where 
E = rate of energy  per  unit  mass  dissipated by viscous  friction, 

y = average  vertical  gradient of potential  temperature, P 

- - <g>3 
and 

13 = average  vertical wind shea r ,  

A2 = empirical  constant. 

Numerous  measurements of E are available  for  at  least  the  lower  altitudes. 

Typical  values, as quoted by H ~ f n a g e l ~ ~ ,  show a decrease  from 300 cm2  /second3 
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a t  ground  level  to 0.07 cm2/second3 at 10 kilometers  and then an  abrupt rise , 

although  data is   scarce and  quite  variable in this  region.  Potential  temperature, 8 , 

is defined by 

8 = T - r h ,  

in   terms of actual  temperature  andr , the  adiabatic  lapse rate. For  dry air 

r = - 9.8 3C/kilorneter. 

The  relationship  between a T/a  h and r is a measure of stability,  such  that 

aT < r unstable, 
a h  

a - o neutral, 
a h  
" 

'3 > r stable, 
a h  

and 

> o inversion. 
a h  

Near  neutral and unstable  conditions  favor  the  development of turbulence.  Values 

of ,L? are  the  least  well known. A s  H ~ l e t t ~ ~  pointed  out,  small-scale  shears  between 

layers a few tens of meters  apart  tend not to  be  included in the  reported  data. 

Shears of this  dimension are probably  the  most  effective in controlling  optical 

effects.  The  three  parameters of equation (90) a r e  height  dependent and also a 

function of one another.  Thus it is difficult to  isolate a single  cause of turbulence. 

The  important  information is that  the  most  probable  mechanism  for  turbulence 

generation, at least  in  the  lower  altitudes, is vertical  temperature  gradient,  vertical 

wind shear,   or  some combination of the two. 

Upper-altitude  investigation  (above several  kilometers) of aircraft  size  turbu- 

lence by Clodman,  Morgan,  and  Ball4' suggests  that wind shear  can  also  combine 

with a gravity-wave  mechanism  to  yield  enhanced  turbulence.  Gravity  waves re- 

sult   from  large air mass flow over  obstacles  such as mountain ranges  or  even 
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smal l   h i l l s .  They are only  imperfectly  understood at present. It is known that 

as these  waves  break down and interact with  each  other  and  the  main flow of wind 

itself,  severe  turbulence  may  result.  These  waves  tend  to  propagate  to  regions 

of lower  density,  meaning  higher  altitudes.  During  this  propagation,  gravity wave 

amplitude  tends  to  build  up  and at the  tropopause  quite a strong  disturbance 

could result  from  interaction with shear-generated  turbulence.  The  tropopause, 

the  region of temperature  inversion  at  approximately  the  200-millibar  pressure 

level,  has  historically  been  considered a source of turbulence.  Whether it acts 

as a source  or  permits  amplification of existing  structure is still unknown. 

Perhaps  the  most  significant  feature of this  region is the  existance of jet   stream 

flows.  Velocities of maximum  winds  in  this flow range  from 20 to  over 100 meters 

per  second.  The  jet  stream  vicinity is a region of strong  horizontal and vertical 

wind shears.  This  may  present  the  source of turbulence  energy  input  which  cascades 

down to  the  smaller  scale  phenomena  affecting  optical  propagation.  observation^^^ 

indicate  that  the  maximum  turbulence  occurs  approximately +40 millibars  from 

the  jet  stream  core.  This roughly corresponds  to 1 kilometer below and 2 kilom- 

e t e r s  above  the core.  Conditions  for  turbulence  generation  at  higher  altitudes a r e  

not ve ry  sensitive  to  diurnal  variations, as a r e  conditions in the  surface  boundary 

layer. The temperature  field is much more  stable  near  the  ground at night  than 

during  the  day and strength of turbulence is often  reduced  by a factor of 100. 

A typical  example of vertical  profiles of temperature and wind velocity are 

shown in  Figure  46.  This is data  from a rawinsonde  observation  for  March  6, 1969. 

The  point of observation was ,  Sterling,  Virginia, and t ime  release was  6:15 pm EST. 

The  midpoint of the  flight  corresponded  to  the  beginning of stellar  observations on 

that  particular night. No attempt at smoothing  the  reported  profile  was  made 

The  temperature  profile  indicates a small  inversion  layer at the  surface  and  then 

an  abrupt  switch  to  near by neutral  conditions.  Stability  with  little  change in the 
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value of temperature  gradient is evident  in  the  tropopause at 11.6 kilometers, 

except  for a disturbed  temperature  layer  near 1 kilometer. Above the  tropopause 

the  gross  temperature  profile  exhibits  fluctuations  in  the  value of temperature 

gradient. Wind profile  maximizes at 10.6 kilometers and a speed of 66 meters 

per  second.  This is well-developed jet s t ream flow and represents  almost a linear 

increase  from  the  surface winds of two meters   per  second. Above the  tropopause 

wind velocity  oscillates  in  magnitude  indicating  the  presence of strong  vertical 

wind shear. Wind direction  remains  fairly  constant  for all levels.  Data  points 

above  the  tropopause are separated by a kilometer  or  more and  thus  reveal 

little  about  fine  structure.  Smaller  scale wind shears and temperature  gradients 

are  most  probably  associated with these  regions of large-scale  shears and gradients, 

however. 

There  are  several  important  points  to  be  derived  from  the  meteorological 

theory and data. 

(1) Little  meteorological  evidence  exists  for a thin, highly turbulent  layer 

responsible  for  all  the  observed  optical  effects. 

(2) Mechanisms do exist at nearly  all  levels of the  atmosphere for the  de- 

velopment of turbulence.  The  combined  factors of wind shear,  potential 

temperature  gradient, and gravity  waves  are  the  most  likely  sources. 

(3) A turbulence  boundary layer exists  near the earth's  surface in the  f irst  

tens  to  hundreds of meters.  

(4) Intermediate  altitudes (below the  tropopause) are thermally  stable  in 

general  (especially at night) and less turbulence is expected. 

(5) The  region of the  tropopause and beyond is characterized by conditions 

of possible  instability  and a high  velocity jet s t ream flow. Turbulence 

is expected  to  increase  in  this  region,  yet not surpass  the  maximum 

near-ground  values. 
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Solutions for Model Parameters 

It is desirable  to  have a functional  dependence on altitude  for  strength of 

turbulence,  Ci(h),  in  order  to  facilitate  comparison of data with  theory. At the 

outset it should  be  realized  that no model could possibly  account  for  the  fine 

structure and all  the  disturbed  layers  that  are thought to  exist.  The  model  should, 

however,  take  into  account  the  gross  meteorological  factors  mentioned  above  and 

conform  to  the  average  or at least typical  behavior of the  atmosphere. As a first 

approach,  consider a model  that  uses  an  exponential  decrease with altitude  to 

describe  the  envelope of Ci(h)  fluctuations.  Refractive-index  varies  linearly with 

density which in  turn  is  proportional  to  exp (- h/7) for  a standard  atmosphere. 

Ci(h)  goes as density  squared,  thus could  be  modeled by 

C i  (h) = C 2  exp ( -  h l3 .5 )  , 
where 

and NO 

NO 

C 2  = ground  strength of turbulence 

h = altitude  in  kilometers . 

The  hypothesis is that  turbulence  due  to  essentially  the  same  mechanism as that 

near  the  ground would be damped out from  lack of material  at  higher  altitudes. 

This  certainly  does not represent  the  full  behavior of Ci(h) and a p p e a r ~ ~ ~ t o  over- 

estimate  the  contribution  from  intermediate  levels below the  tropopause. A more 

accurate  model  in  the  sense of agreement with data  can  be  constructed  from  the 

curve  supplied by Hufnagel, as shown in  Figure 34. His  values  for a clear evening 

arise  from  meteorological  relations  and  stellar  observations. The  curve is charac- 

terized by an  exponential  type  decrease  in  the  lower  atmosphere, a gradual  leveling 

off,  and a sharp  spike  at  the  tropopause. A mathematical  approximation  to  this 

curve  can  be  written 
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Figure 34. Hufnagel’s  turbulent  profile 
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where 

and 

' A  = 9.1 x 10- l~  r n e t e r ~ - ~ / ~ ,  

H, = 1 kilometer,  

B = 2 x ~ o - l ~ m e t e r s - ~ ' ~ ,  

H, = 12 kilometers , 

a = 5 / 3 .  

The  model of high  turbulence at the  tropopause  represented  here by the  delta 

function, was  included by Hufnagel to  explain  stellar  irradiance  flu.ctuations.  The 

value of H,, and the  power of altitude  in  the  denominator  indicate a more  rapid 

roll-off  than  the atmospheric  density  exponential,  The  density  exponential is 

plotted  in  Figure 34 for  comparison.  Hufnagel  also  presents  daytime  data which 

more  closely  corresponds  to  the  exponential  density  decrease.  There  are  some 

scattered  data  points in the  literature  that could  be  added to  Figure 34 for  com- 

parison.  However,  these  results  were  most often  obtained by inaccurate  means 

and  invariably  were  daytime  results.  To  the  author's knowledge  one set  of useful  night- 

time  results  does  exsist,  at  least  for the  lower  atmosphere.  This  is  the  set of high- 

speed  temperature  measurements  made  from an aircraft and reported by Lawrence, 

Ochs, and Clifford42.  These  results  seem  fairly  dependable  since  system  noise 

level  was  less  than  meters-2 '3 . The  average of their  measurements  agrees 

well  with the  Hufnagel  model  although  individual  Ci(h)  values  fluctuate  orders of 

magnitude  around  this  average.  The  net  result of the Hufnagel model is a division 

of Ci(h)  profile  into  low-altitude and high-altitude  structure and an  estimate of the 

relative  contribution of each  altitude  regime.  Hufnagel's  quoted  result  for  the 

integral  over  the whole  profile is 4.3 x in  units of meters" ' 3  . 

The  relationship  between  the  two  regions of the  Hufnagel  model and a check 

on self consistency of the  theory  can  be  made by inserting  the  model  into  equations 

developed  in  Chapter III. A11 the  theoretical  expressions  for  optical  statistics 
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r c 

depend  on  an  integral  over  Ci (h) , the  refractive-index  structure  constant.  The 

form of the integral varies with the  statistic  being  considered.  In  the case of 

log-amplitude or irradiance, the  integral 

is present and  indicates a non-uniform  weighting of Ci(h)  values.  The  largest 

contributions  to  the  integral are at higher  altitudes  where  the  product  Ct(h) h5’6 

takes on its largest  values.  Image  motion,  modulation transfer function, and image 

size  statistics  contain  the  integral 

which, of course,  takes on its largest  values  where  Ci(h) is the  largest,  presumably 

near  the  ground. 

Assuming a model of the  form  fitted  to  the Hufnagel profile, an estimate of the 

parameters of this  model  can be obtained from  the  theoretical  expressions  for 

log-amplitude and image  motion. Of these  parameters  the ground  strength of 

turbulence is the  best  substantiated at approximately 5 X meters - 2 / 3  

Even this value  can  exhibit a large  variation with  locality and time of measure- 

ment. I t  is generally  agreed  from  various  optical and thermal  measurements 

that  this  value is accurate + one order  of  magnitude near  the  ground at night.  The 

height of the  tropopause  can  also  be  determined with some  assurance  from 

meteorological  measurements on a given  night.  The  range i s  approximately 9 to 

14 kilometers.  The two remaining  parameters, Ho and B, can be arrived at through 

the following process. First the analytical expressiong2 is inserted in the  equa- 

tions  for  log-amplitude  variance  and  image  motion  variance and the integrals are 

121 



solved.  Then  the  measured  values of 52 and G-: and the  assumed  values for A 

and H, are inserted.  The  result is two equations  in  the two unknowns, KO and  B, 

which can  be  readily  solved.  Thus a model of the  turbulent  profile  can  be  con- 

structed  for a particular  time on a particular night.  This  model  can be checked 

for  self  consistency by insertion  into  the  equation  for  image size. Fo r  ease of 

mathematical  treatment  the  power of the  denominator in equation (92) is  changed  to 

2/3. This  affects  the fit of the  model  to  Hufnagel's  curve but still gives  order of 

magnitude  results.  The  integrals are now readily  evaluated  in  terms of gamma 

functions, as follows: 

where 

K = . 5 6  D-l  '3 SEC (Z  A) ,  
1 

m 

5; = K 1 C i  (h) d h ,  

and 
m 

a$ K~ C i  (h)  h5,'6 d h ,  

where 

K 2. .O9 k7/'6 S E C 2 . 4  (2 .4) .  
2 

Then, 

and 

= K~ A HA.'3 exp ( -  z) z - ' . ' ~  d z + K R r 
= K [ r (1'3) t BI, 1 

(93) 

(94) 

= K~ 1 A 
exp ( -  h/H,) 

h5/6 d h + K~ 8 6 ( h  - H I )  h5/6 d h 
h 2 / 3  
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= K~ A H i / 6  e x p  (- z) z1 l6  d z + K~ BH:’6 f 
where 

and 

A s  a typical  example,  consider  data  run 584 from  night 65,  for which 

d i a m e t e r ,  I? = . I 5 2  m e t e r s ,  

S E C ( Z A )  = 1 . 0 6 ,  

A = .5 x m e t e r s ,  

H1 = 11.6 k i l o m e t e r s ,  

A = 4 x I O ” 4   meter^-^/^. 

Noting that r (7/6) = 0.923  and r (1/3) = 2.68,  the two equations  can  be  solved  to 

obtain 

and 
H, = 1 1 2  m e t e r s  

B = 6 . 7  x m e t e r s - 2 / 3 .  

Equation  (76) for image  size  under  the  assumption of a Gaussian  beam  profile 

is also  expressible  in  terms of these  parameters,  as follows: 

where 

K = . 9 8  SEC ( Z  A )  9 
3 
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and 

= K 3 [ A H A ’ 3  r (113) + B]. 

Inserting  the  above  calculated  values  for H, and B yields 

ui = 2.9 ( a r c  seconds) 2 .  

This  compares with the  value of 5; = 1.1 (arc  seconds)2  computed  from long- 

t e rm MTF  obtained  nearly  simultaneously with u i  anda  The  values of H, 

and B also  compare roughly  with the Hufnagel fit values of one kilometer and 

2 x Estimates of G2(h) profile  obtained  in  this  fashion  are, of 

course,  restricted by the applicability of the  model. 

8. 

Spectral  densities of irradiance and image  motion  provide a more  sensitive 

technique  to  arrive at an estimate of specific  shape of Ci(h)  profile. As  noted i n  

Chapter I11 both spectral  densities are expressible  in  terms of an  integral of the 

form 

where 3 { 1 is a nonlinear  function  dependent on some  or all of the  following 

parameters: 

(1) Altitude, h .  

(2) Wind velocity  profile, VN (h) . 
(3) Telescope  aperture  diameter, D. 

(4) Stellar  zenith  angle, e. 

(5) Temporal  frequency  under  consideration, f .  
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The 3 {. } function in both irradiance and image  motion  statistics is a fairly 

complicated  integral  expression.  Peskoff 46 and Fried4'  have  solved a simpler 

version (no frequency  dependence) of the  irradiance  equation.  The result in  the 

form of a hypergeometric  function  isuseful  only when expressed  in a power series 

approximation and is restricted  to  the point  detector case. Another  approach as 

used  in  this  thesis is numerical  integration.  The 3 { a  1 equation in each case for a 

finite  aperture and explicit  dependence  on wind velocity  becomes a tabulated  function. 

Reasonably  accurate  values of wind velocity are available  from  the  Weather  Bureau 

and numerical  integration is done by digital computer.  The  result is a linear 

integral  equation  connecting  the  measured  values of ai  o r  CIV to  the unknown 

profile, C i  (h). If the  integrations are replaced by a summation  over a number of 

finite  h  values,  the  result is a set of linear  simultaneous  equations  in  the unknown 

C: (h)  values.  In  principle  this set could  be  solved  for  the  desired unknowns by 

standard  mathematical  techniques.  This  approach was  tried and  very  anomalous 

oscillating  solutions  were  obtained.  Apparently  there is a problem with data  signal- 

to-noise  ratio  and, to a lesser  extent,  with uniqueness of solution. In any event, 

considering  the  error  bars on spectral  density  estimates and the wind velocity 

profiles, it seemed  more  appropriate  to  limit  the  number of degrees of freedom 

and achieve a rougher  estimate of the  profile.  This  was done by using a model  for 

C i  (h)  based  on  the  Hufnagel  curve  but  containing  six unknown parameters 

2 

The first t e rm is the familiar combination of exponential  roll-off and power of 

altitude  in  the  denominator.  This  controls  the  low-altitude  dependence.  The  second 

t e rm is inserted  to  account  for  the  presence of upper  altitude  disturbances.  It is 

a Gaussian  shape with magnitude, B: rms  s ize ,  P , and centered at height, I?r, . The 

Gaussian  shape  was  chosen  arbitrarily as a convenient way of varying  the  magnitude, 
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size, and  position of the  representation of upper  altitude  effects.  Another  curve 

o r  distribution  might  work  just as well and may  even  be a truer  representation 

of the  physical  process. In  the  absence of prior knowledge of the  actual  physical 

process,  one can  well use the  Gaussian  curve. 

Presentation of  Data  and Construction of Several Profiles 

Realizing  that  image  motion effects are due primarily  to  the  strong  turbulence 

of the  earth's  boundary  layer,  the  parameters, A,  H, , and a were  determined 

through  image  motion  spectral  density  data.  The  three  parameters were allowed 

to  take  on  discrete  values and a  test spectral  density was  constructed by numerical 

integration of equation (62). Numerical  integration  consisted of summing  contribu- 

tions  to  spectral  density  from  discrete  altitude  intervals.  Each test spectral 

density w a s  evaluated at a number of discrete  frequency  values  and  subtracted 

from  the  corresponding  data  value at that  frequency.  Absolute  value of this dif- 

ference was used as the  measure of accuracy of fit  to  the  data.  For  image  motion, 

altitude  intervals of 10 meters  were used in the first  100 meters  and  then  intervals 

of 100 meters  were  used to an  altitude of one kiIometer.  The  intervaI  range was  

then broadened to 500 meters and the  maximum  altitude  examined  was 9.5 kilometers. 

Contributions  to  spectral  density  were  examined  every  0.5 Hz from  zero  frequency 

to  15 Hz. A test spectral  density was computed for  the  Cz(h)  profile  resulting 

for  every  possible  combination of the  three  parameters. In a typical  case  each 

parameter was  allowed  to  take on 10  different  values.  This  meant  that  the  results of 

N 

1000  combinations  were  tested. Both the  numerical  integrations and testing were 

conducted on a digital  computer.  The  computer was programmed  to  select  the  best 

fit to  spectral  density  data,  print it out  and also  print out the Cc(h) profile  corre- 

sponding to  this  best fit. Also  printed  out  were  the  sum of absolute  differences  for 

all frequencies  for  each test case.  This  enabled  an  assessment of fit sensitivity 

to  parameter  changes.  Irradiance  spectral  density  data  was  used  in  the  same 
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fitting  routine  to  determine  the Gaussian shape  parameters B, H , and p . Since 

irradiance  data  was  expected  to  be  somewhat  more  influenced by  lower  altitude 

effects than  was  image  motion  data by higher  altitude effects, the  image  motion 

fitting  was  done first and the  best fit parameters  used  in  equation (98) for  the  full 

Ci(h)  profile.  Then  the  irradiance f i t  was  performed  to find the  remaining  three 

parameters.  Altitude  intervals  for  the  irradiance  data  were  taken at 100 meters  

for   the first kilometer and then  increased  to one  kilometer  up  to a maximum 

altitude of 25 kilometers.  This  represented  the  sensible  limits of the  atmosphere 

although  the  formal  integration  extends  from  zero  to  infinity.  Contributions  to 

spectral  density  were  examined  every 10 Hz from 10 Hz to 250 Hz. At the  upper 

end of the  frequency  scale  irradiance  spectral  density was usually down at least 

a factor of 100 from  the 1 0  Hz value. 

At  first each  parameter  value was  allowed to  vary  over a wide range.  The 

ranges  were  than  narrowed as it became  obvious  which  values  gave  the  best fits. 

It was  found that a pure  exponential  decrease, while  giving a close  fit to image 

motion  data,  could not explain  the  shape of irradiance  data.  The  image motion 

data  required  an  exponential  roll-off  typically less than one kilometer while 

irradiance  data  favored  roll-offs of tens of kilometers without yielding a good 

shape  for  even  these high values.  The  implication  was clear. Significant contri- 

butions to  Ci(h) were needed ai: higher  altitudes  to  correctly  predict  irradiance 

spectral  density. With further  analysis it was found that  the  Gaussian "bump" 

fit the  data  quite  well.  Data and the  corresponding fits for  six  different  nights 

are presented and discussed below. These  nights  represent a variety of wind 

conditions  and  presumably  different  distributions of turbulence. 
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The  use of the'sum of absolute  differences  between test and data  spectral  

densities was justified  on  the  basis of the  desire  to  obtain a best fit to  the  shape 

of the  curve.  Absolute  difference  was  sensitive  to  the  lower  frequencies  where 

spectral  density  was  the  largest.  This  was  somewhat  desirable  since  here  the 

signal-to-noise  ratio of data was  greatest.  Statistical  error  bars  were  determined 

in  Chapter IV. For  irradiance  these  were k5 percent and for  image  motion, &50 

percent.  These of course apply to  total  variance,  the  integral  over  the  entire 

spectral  density. A relative  idea of error  distribution with frequency  can  be ob- 

tained by comparison of two consecutive  data  records, as in Figures 39 and 40. 

The  irradiance  spectra  exhibit  differences of about 1 0  percent  near 1 0  Hz. Although 

at  frequencies  near 200 Hz the  relative  difference is as high as 100 percent  in 

places,  the  general  shapes of the two curves  match  well. The two records of 

image  motion  show  large  differences (a factor of four) at the  origin, but  beyond 

one Hz, havenearly  the  same  values as well as shape.  Discussion of this low- 

frequency  variability  in  terms of atmospheric,  instrumental, and  resolution 

effects is included  in Appendix B. A mean  square  difference  statistic  was  also  con- 

sidered but rejected  for its heavy  weighting of the  lower  frequencies.  Since a lot 

of shape  information  for both types of data is contained  in  the  higher  frequency 

roll-off, it was felt that  absolute  difference was a reasonable  compromise  between 

equal  weighting at all frequencies  and  the  mean  square  approach. 

Wind velocity  information  obtained  from  weather  bureau  rawinsonde  flights 

was  supplied  in  terms of speed  and  direction  for a given  altitude  above  the  surface. 

The  reported  speed was that  component  parallel  to  the  earth's  surface.  For 

spectral  density  analysis  using  Taylor's  hypothesis,  the  required  speed  component 

is that  perpendicular  to  the  optical  line of sight, VN . For  horizontal  winds of 

speed V' there  will  obviously  be a reduction  in V for  stellar observations at 
N 
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appreciable  zenith angles. As Young has pointed  out there  is also a possible 

increase in VN dependent  on  relationship of wind direction  to  azimuth of the stellar 

observation, by the  expression 

VO VN = 
SEC ( Z  A )  

[ l  + TANZ (2 A )  SINZ (A Z - e,)] l'zy (99) 

where 

VN = wind component  perpendicular t o  line of sight, 

vo = horizontal wind speed,  

Z A = stellar zenith  angle, 

A z = stellar  azimuth  angle, 
and 

e = direction  from which wind is blowing. 
0 

Division by secant (ZA) would be the  correction  factor if only zenith  angle  effects 

were  considered.  The  term  in  brackets  represents  the  interaction of zenith  angle, 

azimuth  angle, and natural wind direction.  This  term is maximum when (AZ - Bo ) 

= 90°. For this  case and a zenith  angle of 60' the  azimuth  correction  essentially 

cancels  the  zenith  angle  correction. To eliminate  these  effects  from  the  spectral 

density  analysis  only  observations  taken  within a few degrees of zenith were used. 

For  this situation,V, = V, within a few percent  regardless of wind direction. 

Speed, V,, , was itself determined  to  this  same  order of accuracy. Although the 

point of rawinsonde release was  some 80 kilometers  from  the point of stellar 

observations,  the release time and prevailing  winds  were  such  that  the  balloon 

was  essentially  overhead  for  most of the  stellar  observations. In  addition,  the 

upper  altitude  winds  showed little change  over a few hours o r  within a few  hundred 

kilometers of the  measurement site, Rawinsonde  data  for  March 6,   1969,  taken at 

stations as diverse as Wallops  Island,  Virginia;  Richmond,  Virginia; and Phila- 

delphia,  Pennsylvania,  and  for  time  separations of up to 6 hours showed correla- 

tion  within 20 percent with V, values  obtained at the  regular  Sterling,  Virginia, 
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station. Below 1 kilometer  altitude,  correlation  began  to  worsen  indicating  the 

presence of local  terrain  effects. Below  150 meters  rawinsonde wind velocity 

was not available.  Unfortunately  this is the  region  most  effective  in  determining 

image  motion  spectral  density. A reasonable  approximation  to  actual wind pro- 

file was  obtained by linear  interpalation  from a recorded  or  estimated  surface 

wind value  to  the first rawinsonde  value at 150 meters.  All surface wind values 

at the  point of observation  were less than  three  meters  per  second,  for beyond 

this  value  telescope  vibration  became a serious  contribution  to  image  motion and 

data  was not taken. 

The  six  nights  for which  turbulent  profile  models  were  constructed are listed 

in  Table  12  along with the  particular  data  run  parameters  used on each night. 

Image  motion and irradiance  spectral  densities  from  these  data  runs  are  plotted 

inFigures  35  through41.  Ordinate  values are u:/Hz and CIV */Hz respectively. 

Thus  the  strength of turbulence  induced  fluctuations  at a particular  frequency  can 

be  compared  from  one  night  to  the  next.  Corresponding wind velocity  profiles 

for  each night appear in Figures 42 through  47. Note the  significant  range of 

maximum wind speeds  represented  here.  The  continuous  solid  line on the  spectral 

density  plots is a smooth  curve  representation of the  best  computer  generated  fit 

to  the  data  points.  Turbulence  profiles  which  resulted in these  best  fits are shown 

in  Figures 48 through  53. 

Computer  generated fits to  image  motion  spectral  density followed the  average 

behavior of the  data. In particular  the  sharp  increase below one Hz was well 

approximated. A disturbing  feature of the fit, however, was the  one  to two Hz 

oscillation  observed  in all curves.  Oscillation  resulted  from a truncation of the 

Fourier  transform  from  the  computed  autocorrelation function.  The  maximum  lag 
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Figure 46. Vertical  wind  profile  night 65 
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Table  12 

Data  Runs  for  Calculation of Turbulent  Profiles 

Data 

Run 

Number 

87 

121 

4 24 

547 

5 84 

623 

Stellar 

Zenith 

Angle 

7O 

14 ' 

10' 

11° 

18' 

14 ' 

Time 

Olrs) 

23 

09 

00 

00 

01 

01 

(mins) 

56 

05 

45 

21 

02 

53 

CIV * 

.0127 

.0596 

.063 5 

.0194 

.0181 

.0586 

c: 

.13 

.37 

1.5 

.44 

.52 

.77 

value  for  autocorrelation  analysis  was allowed to  be as high as one  second.  Yet 

at even  this  large lag value the  computed  autocorrelation  showed a residual  correla- 

tion of 10  to 20 percent. Note that  the  Fourier  transform of a truncated  function  con- 

tains  an  additional  (sin LZ f/wf) term due to the  discontinuity.  The  variable w is the 

reciprocal of the  lag  value  (transform  variable) at the  discontinuity.  This  explains  the 

observed one to two Hz damped  oscillations.  Autocorrelation of actual  data  fell  to 

zero  typically  within  0.8  seconds.  Thus  the  residual  correlation  was  apparently 

due to  the  theoretical  analysis,  probably  the  interferometer  assumption.  Figure 

54 is a plot of normalized  autocorrelation  computed  for a single wind velocity, 

2 meter/sec,  under  the  interferometer  assumption. Note the  abrupt  switch  to 

nearly  constant  value  for R, ( 7 )  at a lag  value of 0 . 3  seconds. If contributions  from 

all parts of the  aperture  were  included  instead of only  two points at the  extremes 

of the  diameter,  autocorrelation would be expected to go to zero  due  to  an  averag- 

ing effect. Part of the  residual  correlation  may,  however,  be  due  to  the  5/3  power 
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of radial  separation  in  the  phase  structure  function.  This arises from  the  assump- 

tion of Obukhov-Kolmogorov turbulence  spectra.  For  large  separations,  expressed 

in  terms of l a g  value,  and after conversion  to  image motion  autocorrelation by 

division by k2(VN 7)' the  function  decreases only as lag  value  to  the  negative  one- 

third  power.  This  results  in a long tail to  the  theoretical  autocorrelation  function. 

Despite  the  oscillating  behavior,  the  envelope of the fit spectral  density followed 

the  data well. For  higher  frequencies  the  oscillations  tended to  damp  out. 

Turbulent  profile  parameters  determined by the fit to  image motion data were 

A, H,, and a. Early  in  this  process, a was fixed  at 5/3. This  gave  reasonable 

results and also  corresponded  to  the  best  fit  to  the Hufnagel curve. Ground 

strength of turbulence, A, scaled  the  computed  spectral  density  to  give  the  correct 

value of D: . The  exponential  controlling parameter,  Ho , determined  power  spectra 

shape.  Typical  values were in  the  range 100 meters   to  1 kilometer. It was 

found that  accuracy of fit  to  the  data  was not very  sensitive  to  the  value of H,. 

The  test  statistic,  sum of absolute  differences,  varied  less  than 10 percent  over 

this  range.  This is in  sharp  contrast  to  irradiance  differences which obtained a 

sharp  minimum  at  the  best  fit  values of B, H, , andp . Thus  image  motion  spectral 

density, at least  in  this  present  form, is unable to  give an accurate  measure of 

the  shape of lower  altitude  turbulence or   e lse   the  form of the  model  does not  lend 

itself  to a sensitive test. The  dominance of the  low-frequency  peak  may  explain 

this  behavior.  Uncertainties  concerned with the  height of this  peak and its effect 

on model  parameters are discussed  in Appendix B. The  present  analysis  does 

suggest  that  image  motion effects result primarily  from a region of high turbulence 

within a few hundred meters of the  ground. In general,  the  best  value of H, was  

larger   for  conditions of low wind near  the  surface,  indicating a need to  include 

higher  winds  available at the  higher  altitudes.  Apparently  they  were  needed  to 
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construct  the  higher  frequencies of image motion.  Even so, turbulence beyond 

a few kilometers did  not  contribute  sensibly  to  image  motion. Although wind 

speeds at the  tropopause  showed a large  variation  from night to night,  speeds  for 

the first few kilometers  were  fairly  uniform  for  most  nights.  This could explain 

why image  motion  spectral  densities  did not have  significantly  different  shapes 

from night to night.  The  one  exception is night 36 data.  For  this night, wind speeds 

as high as 30 meters  per second were encountered  in  the first three  kilometers 

with an  unusual  concentration of high winds  in  general at low altitudes.  The 

corresponding  image  motion  spectrum  shows at least  a  factor of two increase in 

bandwidth and a lessening of the  low-frequency  peak. 

It is apparent  that  a  profile could  be chosen  to  generate  data  for good fits  to 

all  irradiance  spectral  densities.  The  computer  generated fit, while determined 

primarily by the  low-frequency  data, followed the  high-frequencies  very  well and 

tended  to  represent  the  average of the  data  points  all along the  curve.  Little  attempt 

was  made by the  computer fit to follow the  data  fine  structure  since  there  were 

not enough degrees of freedom  in  the  model.  Comparison of consecutive 20 

second  records showed that  the  fine  structure is for  the  most  part  a  real  effect and 

not statist ical   error.  Note records one and two for  data  run 584 night 65 (Figures 

39 and 40). It is possible  that  equipment  vibration  or  electronic  noise could account 

for  this  fine  structure, although the  appearance of fine  structure  at  different  fre- 

quencies on different  nights and different  times  argues  against  this. 

Perhaps  the  most  striking  feature is the  maximum of irradiance  spectral 

density  that  occurs  between 1 0  and 20 Hz. In some  cases,  night 297 and night 65, 

the  computer fit exhibits  the  same  behavior. By printing out the  tabulated 5 { -  } 

function versus  altitude  for  each  frequency of interest, it was  possible  to  determine 

which altitude  ranges had the  most weight in  determining  magnitude of spectral 
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density at a particular  frequency.  Low-frequency  behavior,  including  that  interest- 

ing  maximum, was found to be controlled  for all wind profiles  primarily by con- 

tributions  from  the  very high altitudes  (above 15 kilometers).  Contributions  to 

the  middle  and  higher  frequencies  were  increasingly  weighted  to  those  altitudes 

where wind velocity  maximized.  Since  low-frequency  components were relatively 

stronger  in  terms of CIV2/Hz the  turbulence  profile  was  forced  to  maximize  above 

the  region of maximum wind. The  maximum of Ci(h)  appeared at higher  altitudes 

for  nights with the  largest  maximum wind velocities  (night 65 and 7 7 )  and  the 

Gaussian "bump" was  more  sharply peaked. Low wind conditions  represented by 

night 64 produced a broadly  peaked  Ci(h)  profile.  This was to be expected  since 

the  lower wind was  also  more  uniform with  altitude. 
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CHAPTER VI 

CONCLUDING REMARKS 

The  spectral  density  technique  for  estimating  vertical  profile of turbulence 

strength, C,(h), appears  to  be a significant  improvement  over  previous  methods 

based  only on the  magnitude of irradiance and image  motion  variance.  The 

variance  technique  uses  theoretical  dependence on moments of the  distribution. 

The  spectral  density  technique  also  follows  this  approach with the  moments  being 

supplied by wind velocity as a function of altitude. A great  deal  more  information 

is available,  however,  since wind velocity  structure is not a simple power of alti- 

tude but provides a whole series of moments. Wind velocity  values are accurately 

obtained  from  Weather  Bureau  rawinsonde  flights  adjacent  to  the  site  of  stellar 

observations.  These  should be supplemented by local  surface and near-surface 

measurements. By using  near-zenith stellar observations  the  azimuth  effects on 

wind velocity are eliminated.  Thus wind velocity  does  not  have  to be a limiting 

factor  in  the  determination of Ci(h).  The real limiting  factors  appear  to  be 

questions of statistical accuracy and lack of stationarity. In image  motion  there is 

2 

I an additional  problem  in  separating  instrumental  from  atmospheric  effects. 

I 
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In  this  report  the  theoretical  base  for stellar observations  was  reported  and, 

where  necessary,  extended  to  account  for  operation of the  Stellar  Image  Monitor 

apparatus.  Certain  major  assumptions  were involved in the  theoretical  base. 

(1) Rytov  "approximation" to the  scalar wave  equation. 

(2) Local  stationarity  and  isotropy of optical  statistics. 

(3) Obukhov - Kolmogorov  turbulence  spectra. 

(4) Taylor's  hypothesis  regarding  the  relation of spatial  and  temporal fre- 

quencies  through wind velocity. 

Assumptions (2) and (3) are the  most  contested.  Nonstationarity  effects were 

noted in  the  data and resulted  in  larger  error  bars as well  as a divergence of the 

data  from  the  theoretical  description.  Departures  from an  Obukov-Kolmogorov 

turbulence  spectrum could also  be  expected  for  the  stable  near-surface  conditions 

at night. 

Irradiance  statistics  seem  to  be  well  covered by  the  theory,  although  more 

attention is needed to  the  effects of aperture  size and its interaction with zenith 

angle.  Image  motion  statistics  need  more  work,  particularly  in  the  description 

of image  time  autocorrelation  function  for  finite  apertures. It will be  necessary 

to  include  phase  effects  from all regions of the  given  aperture.  This will enable 

better  computer fits to  image  motion  spectral  densities with a corresponding 

improvement  in  determination of C2(h)  profile. 
N 

Data  collection  and  reduction  procedures  should  also  be  strengthened.  In 

general  the  Stellar  Image Monitor  apparatus  was found to  be  suitable  for  the  types 

of data  required  in  this  thesis  research.  Irradiance  statistics  were  measured with 

good accuracy and were available  for  the  interesting  range of aperture  sizes  near 
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the  correlation  distance.  The use of larger diameter  optics would provide new in- 

formation  on image motion.  In  particular , a test of the weak D-l l3  aperture 

dependence  from  the Obukhov-Kolmogorov theory  could  be  made. It would also 

be desirable  to  record and analyze  longer  records of image  motion  data. This 

would provide  more  information on  low-frequency  behavior,  narrow  the  statistical 

e r ro r   ba r s ,  and  tend to average  out effects of short-term  nonstationarity  in  the 

atmosphere.  Alternately, if data were taken  with  higher  surface wind velocities, 

spectral  densities would broaden  and  apparent  resolution would improve. 

Computed Ci(h)  profiles as reported  in  the last chapter, although  not incorporat- 

ing all the  accuracy and improvements  suggested,  do  provide  valuable  information 

and new insight  into  the  shape of the  actual  profile.  The following conclusions 

can  be  drawn  from  this work: 

(1) Nighttime  contributions  to  Ci (h) arise primarily  from two turbulence re- 

gions, one near the earth's  surface  and  another in  the  vicinity of the 

tropopause. 

(2) Image  motion  variance and spectral  density  can  be  explained  adequately 

by contributions in the first few kilometers  above  the  surface. If an 

exponential  distribution  for  turbulence is used,  the l/e point is typically 

a few  hundred  meters. 

(3) The  shape of irradiance  spectral  density and the  structure of upper 

altitude  winds  require a definite  contribution to Ci(h) at altitudes  near  the 

tropopause.  The  assumption of a single  maximum,  Gaussian "bump", 

fits the  data well for  different wind profiles  and  total  turbulent  strengths. 
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(4) Parameters of the  Gaussian fit tended  to  give a low,  wide  maximum 

for  low wind conditions  and a sharper,  higher  peak  for  high winds. This 

brings  out  the  association of wind velocity and strength of turbulence 

implicit  in  the  spectral  density  theory.  Typical  maximum  values of Ci(h) 

near  the  tropopause  were  near 1 x m-2’3. These were about 

three to four  orders of magnitude less  than  the  ground  strength values, 

but  supplied  essentially  all  the  contribution  to  irradiance  statistics. 

It is apparent  that  statements  in  further  detail  cannot  be  made without in- 

creasing  the  model  complexity  and/or  increasing  data  accuracy. To get  most 

value  out of refinements like this it would also  be  necessary  to  determine  the 

appropriate  number of degrees of freedom of the  model,  given  data  accuracy 

and given  the  method of model  testing. 
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APPENDIX A 

IMAGE INTENSITY  PROFILE AND OPTICAL TRANSFER  FUNCTION 

The  diffraction  image  formed  in an optical  system is characterized  by a 

normalized  intensity  distribution  called  the  optical  spread  function, 

S = S(x, y; x ' ,  y'; A) S(2, 2 ' ;  A), (Al) 

light flux in ( A  -t dA), which  originates in d;' and passes  through  the  optics  to 

fall  on &, divided  by  d< d;' dA , where 

+ 
x = two-dimensional  vector  in  object  plane 

x = two-dimensionalvector  in  image  plane. 
and 

+ 

The  optical  spread  function is assumed  to  be  time  independent and normalized 

such  that 

Use of a transfer function  to  describe  the  optical  system  requires  the  exist- 

ence of an  isoplanatism  patch, an  a rea  in the  object  field  over  which wave aberra-  

tions are effectively  constant. This enables  the  optical  spread function to  be 

written 

s = S ( G - 2 ;  A). 

+ 
The  optical  transfer  function, T( f )  , is defined as the  Fourier  transform 

of S. The  transform  variable is T ,  two-dimensional  spatial  frequency, so that 
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and 
r m  

S(G - 2’  ; A) = J T(?) exp [2n i 7 - (2  - G f  ) ]  d?. tA4) 
- m  

The  object  intensity  distribution, O(2 ’  ) , can be written  in  terms of a Fourier 

integral of spatial  frequenciesi6 as 

O ( Z ’ )  = W(;) exp ( 2 7 ~  i f ;’) df 
+ 

and 
m 

W(?) = J-mO(;’) e x p ( -  2n i f * Z ‘ )  d;’: 
+ 

where 
W(7) = Fourier   t ransform  of  O ( ; ’ ) .  

Image  intensity  distribution, I(;) , is by  definition of the  optical  spread  function, 

just  the C ~ P  -7olution of S( < - z’ ; A) with O( 2’ ), that i s ,  

r m  

I(;) = J S(G-;’; A) O ( ; ‘ )  d;’. 
- m  

Equation (A4) for S and  equation (A7) for I allow  image  intensity  to be expressed 

in terms of the  transfer  function by 

r m  

m 

= / I T ( ? )  exp [ 2 n i  f (<-Z’)]d?O(;’)d;‘  
+ 

- m  
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m 

/IT(?) exp [277 i f - (t -a ' ) ]  O(2') d t '  d? 
-4 

-m 

m m 

T(T) exp (277 i T * a) O(t') exp ( -  277 i T * 2 ' )  d2' dT 
- m  

If the object is a  point  source, O("x' ) = 8 ( t '  ) and 

Thus. 

For real symmetric  images  the transfer function is real, T(7)  = M ( T ) ,  and 

A transformation to polar coordinates  for both "x and 7 allows I to be  expressed 

in a form  more  suitable for computation.  That is, given 

-m 

169 



and letting 

and 

, 
f = w c o s @ ,  X = r c o s 8 ,  

g w sin+, y = r sin 8 ,  
then, 

Symmetry  arguments  require  that I be B independent and M be C$ independent. 

Therefore, 

I ( r )  = JomM(u)u In  exp(2-rri r w c o s @ ) d @ d w ,  

or 

This is the  final  form  relating  image  intensity and the transfer function. 

The  theoretical  transfer  function  for a diffraction-limited  optical  system 

with  circular  aperture  has  been computed  and results in 

where 

X = wavelength, 

D = aperture  diameter,  

w = spatial  frequency  in  cycles  per arc second. 
and 

Substitution of this expression  into  equation (A12) yields  the  familiar Airy pattern 

for a diffraction-limited  lens: 
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where 

F = system focal length. 

In angular measure this becomes 

with S in radians.  This  expression is plotted in Figure 25. 
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APPENDIX B 

IMAGE MOTION LOW-FREQUENCY BEHAVIOR 

Image  motion  variance as measured in this  research often  exhibits larger  

variability  among  adjacent  data  runs  than  can  be  explained by electronic signal- 

to-noise  ratios or statistical  sample  size  error  bars.  In  examination of image 

motion spectral  density it is seen  that  the greatest variability as well  as the 

greatest  fraction of total  variance  (typically 30 to 50 percent)  resides  in  the low 

frequencies below one Hz. In the  consecutive  records shown in  Figures 39 and 40 

this low frequency  peak is seen  to change by a factor of four.  Previously  (Chapter 

IV) this  has  been  attributed  to  nonstationarity  in  the  atmosphere.  This  may  very 

well  be  the  case,  for  gusts of wind mixed with periods of calm  could  conceivably 

alter the  total  variance and low-frequency  spectrum  quite  rapidly.  In  addition, a 

change  in  refraction  contributed by the  total  atmospheric  path would show  up as a 

low-frequency  effect. 

A s  resolution bandwidth of the  spectral  density  analysis was  increased  from 

the  nominal  value of one Hz the  large  contribution  at low frequencies  was  found 

to  be  concentrated  in a smaller  region,  typically  within 0 . 3  Hz of  the  origin, 

and to  increase  in  height.  Contributions  in this region  may be  due entirely  to an 

instrument effect, tracking of the star by the  telescope  drive.  The  standard 

computer  analysis  described  in  Chapter IV removed any linear component  in  the 

image  motion  data by least squares  fitting a straight  line  to  the  data.  This  was 

done to account for  drift  in  the  tracking.  It is also  possible  that  improper  tracking 

could  contribute  curvature  to  image  motion  data.  This  very point is discussed 

by K ~ l c h i n s k i i ~ ~ .  He concludes  that,  while  small,  the  curvature  component  could be 

significant  for stars away from  the  meridian  and  in  the case of image  wander 

caused by changes  in  total  refraction. 
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To test this  assertion, a quadratic  term  was  also  removed in a least  squares 

fashion  from a sample of data showing a strong low-frequency  peak,  data  run 

558 of night 64. This  procedure  reduced  the  peak a factor of two  and resulted 

in a more  believable  shape  for  spectral  density,  i. e. , a gentle  rolling off as zero 

frequency  was  approached.  Removal of higher  order  terms  did  not  further signif- 

icantly  reduce  the  peak,  indicating  that  only  the  linear and quadratic  terms  were 

appreciable  in  the  data.  It is still difficult to  state how much of this  effect is 

truly an instrument  effect.  The  data could very  well  contain  atmospheric  contri- 

butions at these low frequencies  that would be  attenuated by removal of even  the 

linear  term. In fact,  the  theoretical  prediction of the Obukhov-Kolmogorov spectrum 

is that  for low winds (less than  one meter  per  second)  significant  correlation 

exists  to l a g  values beyond  one second of time.  This  indicates  significant  contri- 

bution at frequencies below  one Hz. Evidence of this is supplied  in  the  relative 

ease with  which a computed spectral  density  was  constructed  for a reasonable 

C i  (h) profile  to fit the low -frequency  peak. 

For  present  purposes  suffice it to  say  that  for  resolution bandwidth of one 

Hz the spectral  density  values  at  zero and 0 . 5  Hz should  be  considered  accurate 

only to within a factor of 5 to 10 ,  and are probably a little high ill general.  The 

net  effect of higher  than  actual  peak on model  parameters  for  $(h) is to  require 

a smaller H, and larger A. This is equivalent to  concentrating  turbulence at 

lower  altitudes  where wind speed is lower and  low-frequency image motion  can 

be  enhanced. Add to this  the  large  uncertainty and variability of low altitude 

winds and it is difficult to  make  more  than  order of magnitude  estimates of the low- 

altitude  turbulence  distribution. 
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APPENDIX C 

IMAGE SIZE CALCULATION 

The  image size determination of equation (75) is greatly  simplified  mathe- 

matically if the approximation of exp (- cf 5 is made  for  the  true  exp (- ~ 9 ' ~  ) 

MTF  factor. To test this  approximation a numerical  integration of equation (75) 

was carried out for both cases.  This  integration was performed  for one  value 

of the  parameter C which  generated an MTF  close  to that of stellar data. With 

f expressed in cycles  per  arc  second  the value  used for C was two. Numerical 

integration  was  performed on a  digital  computer  through  a  standard  integration 

subroutine.  The  subroutine  employed  the  trapezoidal  rule  together with  Rom- 

berg's  extrapolation  method. Although the formal integration  extended  from 

zero  to infinity  the  MTF  exponential  factor  in  the  integrand  enabled  the  numeri- 

cal  procedure  to be truncated at a  reasonable  value  for  spatial  frequency. Thus 

the  actual  integration  was  carried out over  the  range  zero  to 50 cycles  per  arc 

second. 

The  integrals  were  performed  successively  for  different values of the  vari- 

able S, arc  seconds, and  image  profiles  were  constructed  for both cases.  The 

square  law  approximation  resulted  in  a  slightly  wider  image with less  intensity 

in  the tail. Despite  this  behavior  the two curves followed each  other  quite  closely 

and the  total  error  in  rms  image width was only 7 percent, with the  square 

law  case giving  the  higher  value  for width. Thus it appears  reasonable  to  employ 

the  square law approximation. 
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